
Knowledge Compilation Languages as Proof

systems

Florent Capelli

July 12, 2019

22nd International Conference on Theory and Applications of Satisfiability Testing

Université de Lille, Inria, UMR 9189 - CRIStAL - Centre de Recherche en Informatique Signal et

Automatique de Lille.

1

The problem #SAT

#SAT

input: CNF-formula F =
∧

i

∨
j `i,j

output: #F := the number of satisfying assignments of F .

• Generic #P-complete problem

• Harder than SAT: PH ⊆ P#P[1] (Toda’s Theorem)

• Hard even to approximate.

• Many practical (exact) #SAT-solvers: D4, Cachet, miniC2D,

sharpSAT etc.

2

Trusting the tools

Should we trust the tools?

For SAT-solvers:

• Easy to check if an output assignment is indeed satisfying but what

about UNSAT?

• Since 2013: mandatory certificate UNSAT Track of SAT

competitions.

• Since 2016: mandatory in the Main Track.

Can we have the same level of exigence for #SAT-solvers?

What would be a certificate?

3

Certificates in SAT-solvers

Proofs are given in the DRAT format:

• Power comparable to (extended) resolution

• CDCL SAT-solvers can be easily modified to output DRAT

certificates and it has been crucial for adoption:

Although resolution proof formats have been supported in the

past, SAT Competition 2017 will only support clausal proofs.

The main reason for this restriction is that no participant in

recent years showed any interest in providing resolution as

such proofs as too complicated to produce and they cost

too much space to store.

Website of SAT Competition 2017

4

Cook-Reckhow proof systems for #SAT

Proof systems in the Cook-Reckhow sense:

• PTIME verifier V : CNF× PROOFS→ N ∪ {⊥}
• V (F ,P) outputs

• ⊥ if P is not a valid proof for F

• N ∈ N iff N = #F

• Completeness: every CNF-formula F has a proof.

5

A naive proof system for #SAT

A proof that #F = N could be:

• The list (S1, . . . ,SN) of satisfying assignments of F

• A refutation (e.g. using resolution) that

F ∧
N∧
i=1

¬Si

is UNSAT1.

Problems:

• The proof size ≥ #F

• Few formulas have small proofs: x1 ∨ · · · ∨ xn has no proof smaller

than 2n − 1...

1Si seen as a conjunction of literals on var(F).

6

Succinctly representing F

Can we prove #F without listing explicitly all solutions?

By succinctly representing all satisfying assignments of F in some data

structure D:

1. D tractable: #F can be computed in time poly(|D|)
2. Check in PTIME that D actually represents F

Such data structures actually almost exist:

• Focus of Knowledge Compilation

• Represent Boolean functions with restricted Boolean circuits.

• For such a circuit C , querie such as counting can be solved in

PTIME in O(|C |).

7

Succinctly representing F

Can we prove #F without listing explicitly all solutions?

By succinctly representing all satisfying assignments of F in some data

structure D:

1. D tractable: #F can be computed in time poly(|D|)
2. Check in PTIME that D actually represents F

Such data structures actually almost exist:

• Focus of Knowledge Compilation

• Represent Boolean functions with restricted Boolean circuits.

• For such a circuit C , querie such as counting can be solved in

PTIME in O(|C |).

7

Knowledge compilation

Many representations exist where counting is tractable:

• FBDD (Read-Once Branching Program)

• SDD

• d-DNNF

• Affine formulas etc.

Could an FBDD D be a certificate for #F?

• Check that D ⇔ F ie D represents all models of F .

• Compute #D in PTIME in |D|.

8

Knowledge compilation

Many representations exist where counting is tractable:

• FBDD (Read-Once Branching Program)

• SDD

• d-DNNF

• Affine formulas etc.

Could an FBDD D be a certificate for #F?

• Check that D ⇔ F ie D represents all models of F .

• Compute #D in PTIME in |D|.

8

The good and the bad news

Unfortunately not enough:

• One can compute #D in PTIME.

• One can check D → F in time poly(D,F).

• Thus one can check whether #D ≤ #F .

• Checking F → D is usually coNP-hard:

• 0 can be succinctly represented.

• Checking F → 0 is equivalent to check whether F is UNSAT.

9

The good and the bad news

Unfortunately not enough:

• One can compute #D in PTIME.

• One can check D → F in time poly(D,F).

• Thus one can check whether #D ≤ #F .

• Checking F → D is usually coNP-hard:

• 0 can be succinctly represented.

• Checking F → 0 is equivalent to check whether F is UNSAT.

9

The good and the bad news

Unfortunately not enough:

• One can compute #D in PTIME.

• One can check D → F in time poly(D,F).

• Thus one can check whether #D ≤ #F .

• Checking F → D is usually coNP-hard:

• 0 can be succinctly represented.

• Checking F → 0 is equivalent to check whether F is UNSAT.

9

FBDD: Free Binary Decision Diagrams

Compute a Boolean function by iteratively testing variables:

x1

x2 x2

x3 x3 x3 x3

0 1

Read-Once: Each variable appears at most once on every path.

10

FBDD: Free Binary Decision Diagrams

Compute a Boolean function by iteratively testing variables:

x1

x2 x2

x3 x3 x3 x3

0 1

Read-Once: Each variable appears at most once on every path.

10

FBDD: Free Binary Decision Diagrams

Compute a Boolean function by iteratively testing variables:

x1

x2 x2

x3x3x3 x3

0 1

Read-Once: Each variable appears at most once on every path.

10

Regular resolution

Resolution refutation is regular if on every path in the refutation DAG,

each variable x is resolved at most once.

Connection with FBDD: A regular refutation of F is

• FBDD with sinks labelled by clauses of F .

• Source to C -labelled sink path must refute C .

Refutation of F = C1 ∧ C2 ∧ C3 = x ∧ y ∧ (¬x ∨ ¬y)

x

y

C1

C3

C2

11

Regular resolution

Resolution refutation is regular if on every path in the refutation DAG,

each variable x is resolved at most once.

Connection with FBDD: A regular refutation of F is

• FBDD with sinks labelled by clauses of F .

• Source to C -labelled sink path must refute C .

Refutation of F = C1 ∧ C2 ∧ C3 = x ∧ y ∧ (¬x ∨ ¬y)

x

y

C1

C3

C2

11

Regular resolution

Resolution refutation is regular if on every path in the refutation DAG,

each variable x is resolved at most once.

Connection with FBDD: A regular refutation of F is

• FBDD with sinks labelled by clauses of F .

• Source to C -labelled sink path must refute C .

Refutation of F = C1 ∧ C2 ∧ C3 = x ∧ y ∧ (¬x ∨ ¬y)

x

y

C1

C3

C2

11

Certified FBDD

Previous model only works for unsatisfiable CNF: extend it with 1-sinks.

Enriched representation of F = C0 ∧ C1 = (¬x ∨ ¬y) ∧ (x ∨ y)

x

y

y

1

0(C1)

0(C0)

A certified FBDD D is valid if:

• 0-sinks are labeled with a clause C and

• each path from the source to a 0-sink must refute the label.

• If every label are clauses of F then: ¬D → ¬F

12

Certified FBDD

Previous model only works for unsatisfiable CNF: extend it with 1-sinks.

Enriched representation of F = C0 ∧ C1 = (¬x ∨ ¬y) ∧ (x ∨ y)

x

y

y

1

0(C1)

0(C0)

A certified FBDD D is valid if:

• 0-sinks are labeled with a clause C and

• each path from the source to a 0-sink must refute the label.

• If every label are clauses of F then: ¬D → ¬F

12

Certified FBDD

Previous model only works for unsatisfiable CNF: extend it with 1-sinks.

Enriched representation of F = C0 ∧ C1 = (¬x ∨ ¬y) ∧ (x ∨ y)

x

y

y

1

0(C1)

0(C0)

A certified FBDD D is valid if:

• 0-sinks are labeled with a clause C and

• each path from the source to a 0-sink must refute the label.

• If every label are clauses of F then: ¬D → ¬F

12

Certified FBDD as proof system for #SAT

Let D be a certified FBDD:

• Check in PTIME if D is valid.

• Check in PTIME if F ⇔ D

• #D can be computed in PTIME.

D is a proof that F has exactly #D satisfying assignments.

Can we find such proofs?

13

Finding a proof

Explore the solution space with caching:

Exhaustive DPLL: #F = #F [x 7→ 0] + #F [x 7→ 1]

x

y ¬x ∨ ¬y

Proof of F [x ,¬y]

z x ∨ ¬z

14

Finding a proof

Explore the solution space with caching:

Exhaustive DPLL: #F = #F [x 7→ 0] + #F [x 7→ 1]

x

y ¬x ∨ ¬y

Proof of F [x ,¬y]

z x ∨ ¬z

14

Finding a proof

Explore the solution space with caching:

Exhaustive DPLL: #F = #F [x 7→ 0] + #F [x 7→ 1]

x

y

¬x ∨ ¬y

Proof of F [x ,¬y]

z x ∨ ¬z

14

Finding a proof

Explore the solution space with caching:

Exhaustive DPLL: #F = #F [x 7→ 0] + #F [x 7→ 1]

x

y ¬x ∨ ¬y

Proof of F [x ,¬y]

z x ∨ ¬z

14

Finding a proof

Explore the solution space with caching:

Exhaustive DPLL: #F = #F [x 7→ 0] + #F [x 7→ 1]

x

y ¬x ∨ ¬y

Proof of F [x ,¬y]

z x ∨ ¬z

14

Finding a proof

Explore the solution space with caching:

Exhaustive DPLL: #F = #F [x 7→ 0] + #F [x 7→ 1]

x

y ¬x ∨ ¬y

Proof of F [x ,¬y]

z

x ∨ ¬z

14

Finding a proof

Explore the solution space with caching:

Exhaustive DPLL: #F = #F [x 7→ 0] + #F [x 7→ 1]

x

y ¬x ∨ ¬y

Proof of F [x ,¬y]

z x ∨ ¬z

14

Finding a proof

Explore the solution space with caching:

Exhaustive DPLL: #F = #F [x 7→ 0] + #F [x 7→ 1]

x

y ¬x ∨ ¬y

Proof of F [x ,¬y]

z x ∨ ¬z

14

Solving #SAT in practice : exhaustive DPLL

Most exact tools for #SAT are unfortunately not working exactly as

before:

Exhaustive DPLL (#DPLL)

• #F = #F [x 7→ 0] + #F [x 7→ 1]

• #(F1 ∧ F2) = #F1 ×#F2 if var(F1) ∩ var(F2) = ∅

15

Solving #SAT in practice : exhaustive DPLL

Most exact tools for #SAT are unfortunately not working exactly as

before:

Exhaustive DPLL (#DPLL)

• #F = #F [x 7→ 0] + #F [x 7→ 1]

• #(F1 ∧ F2) = #F1 ×#F2 if var(F1) ∩ var(F2) = ∅

Main work on:

• Heuristics: on how to choose x .

• Caching policy: cache already computed subformulas.

• In practice: D4, DMC, Cachet, miniC2D, sharpSAT etc.

15

Solving #SAT in practice : exhaustive DPLL

Most exact tools for #SAT are unfortunately not working exactly as

before:

Exhaustive DPLL (#DPLL)

• #F = #F [x 7→ 0] + #F [x 7→ 1]

• #(F1 ∧ F2) = #F1 ×#F2 if var(F1) ∩ var(F2) = ∅

Underlying circuit of exhaustive DPLL: Decision-DNNF [Huang,

Darwiche]:

x

∧

F1 F2

F [x 7→ 1]

DecDNNF = FBDD + ∧-gates with disjoint variables 15

Certified DecDNNF

A certified DecDNNF D: same as certified FBDD with decomposable

∧-gates:

• Checking that D is valid still PTIME

• Computing #D still PTIME.

• Checking D ⇔ F PTIME: check that every root to 0-sink paths

refutes the label.

Proof system for #SAT.

• Existing tools can be modified to output resembling certificates.

16

Certified DecDNNF

A certified DecDNNF D: same as certified FBDD with decomposable

∧-gates:

• Checking that D is valid still PTIME

• Computing #D still PTIME.

• Checking D ⇔ F PTIME: check that every root to 0-sink paths

refutes the label.

Proof system for #SAT.

• Existing tools can be modified to output resembling certificates.

16

Circuit based proof systems

Certified DecDNNF = proof systems for every tractable task on

DecDNNF.

Example:

• F CNF on variables X , Y ⊆ X . Find

max
τ |=F

#{y ∈ Y | τ(y) = 1}.

Representation Complexity

CNF coNP-hard

DecDNNF Linear

• Certified DecDNNF are a proof system for the Hamming weight

problem.

Application: proof system for maxSAT(F) by taking Y = {sC | C ∈ F}
and CNF

F̃ =
∧
C∈F

sC ∨ C

17

Circuit based proof systems

Certified DecDNNF = proof systems for every tractable task on

DecDNNF.

Example:

• F CNF on variables X , Y ⊆ X . Find

max
τ |=F

#{y ∈ Y | τ(y) = 1}.

Representation Complexity

CNF coNP-hard

DecDNNF Linear

• Certified DecDNNF are a proof system for the Hamming weight

problem.

Application: proof system for maxSAT(F) by taking Y = {sC | C ∈ F}
and CNF

F̃ =
∧
C∈F

sC ∨ C

17

Conclusion

Take-away message:

• We introduced a proof system for #SAT, realistic for DPLL-based

#SAT solver.

• If only F → D or D → F : proof for lower/upper bound on #F .

• Certified circuits may be used to certify other problems on CNF

(though it may be more far fetched): maxSAT, minimal Hamming

Weight, weighted satisfying assignment etc.

18

Future work

• Implement a certified Knowledge Compiler / #SAT solver (work in

progress with J.M. Lagniez, P. Marquis and Fanny Canivet):

• Modify D4 to output certificate,

• Need to incorporate clauses learned by calling oracle SAT-solvers,

• Implement a “checker”

• Can we certify other classes of circuits used in Knowledge

Compilation?

• How does it compare with existing maxSAT proof systems?

19

