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Quantified Boolean Formulas (QBF)

• QBFs are propositional formulas with boolean quantifiers
ranging over 0,1.

• Example: ∀x∃y . (x ↔ y)

“True” because for each x there exists y such that y = x

• Quantifications are shorthands for connectives
∃xP(x) = P(0) ∨ P(1) ∀xP(x) = P(0) ∧ P(1)

Example:

(1) ∀x∃y . (x ↔ y)
(2) ∀x . (x ↔ 0) ∨ (x ↔ 1)
(3) ((0↔ 0) ∨ (0↔ 1)) ∧ ((1↔ 0) ∨ (1↔ 1))
(4) 1 (True)
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Semantics via a two-player game

• We consider QBFs in closed prenex form with CNF matrix.

Example: ∀y1y2∃x1x2. (¬y1 ∨ x1) ∧ (y2 ∨ ¬x2)

• A QBF represents a two-player game between ∃ and ∀.

• Play the prefix from left to right

• ∃ wins a game if the matrix becomes true.

• ∀ wins a game iff the matrix becomes false.

• A QBF is true iff there exists a winning strategy for ∃.

• A QBF is false iff there exists a winning strategy for ∀.

Example:
∃e∀u. (e ∨ u) ∧ (¬e ∨ ¬u)

∀ wins by playing u ← ¬e.
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QBF proofs

Weak QBF proof systems

• Q-Resolution, QU-resolution and ∀Exp+Res.

QBF

QBF SolverQBF Proof
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• used to capture the performance of QBF solvers. Proof rules
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QBF proofs

Weak QBF proof systems

• Q-Resolution, QU-resolution and ∀Exp+Res.

• used to capture the performance of QBF solvers. Proof rules
don’t go much beyond the inference used in solving

• Winning strategies can be feasibly extracted from these proofs.

QBF

QBF SolverQBF Proof

Winning strategy
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QRAT- A universal checking format for QBF

[Biere, Heule, Seidl 14]

• Not associated with any type of QBF solver.

• Meant to capture all possible solving inferences including
preprocessing.

• Strategy extraction known for True QBF [Heule, Seidl, Biere
14], so we focus on False QBF.

• Strategy extraction may not be possible if proofs are too short
and strategies are too big.
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A chess metagame

• Choose a colour white/black

• Play a game of chess with that colour

• Easy proved: if you choose the best colour you are guaranteed
a win or draw if you play optimally.

• Hard strategy: but you still have to choose all the correct
moves and doing so may be hard.
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The idea behind QRAT

Blocked Clause Addition

• A clause C is blocked on literal l in cnf φ if C resolved on l
always produces a tautological clause.(i.e. for every D with l̄
in it R(C ,D) = C ∨ D\{l , l̄} always contains two
complementary literals)

• A blocked clause can be added or removed without changing
satisfiability.

• In fact as long as φ � R(C ,D) for every clause D with l̄ in it,
C can be added or removed like a blocked clause.
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Unit Propagation

• A unit clause is a clause with only one literal.

• In unit propagation we find any unit clauses x in CNF φ and
add x = 1 (same as ¬x = 0) to our assignment.

• Adding x = 1 may create new unit clauses. We unit
propagate until fixed point.

• φ `1 C means C is derived from φ via unit propagation.

• φ `1 C implies φ � C

• likewise φ ∧ C̄ `1 ⊥ implies φ � C

• E.g φ ∧ C̄ `1 ⊥ allows us to learn/infer clause C with only
polynomial time checking.
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DRAT (Deletion Resolution Asymmetric Tautology)
• Combines blocked literal addition with reverse unit

propagation to get a powerful propositional proof system
(details omitted here).

• We can add C (l ∈ C ) to φ, when φ ∧ ¬R(C ,D) `1 ⊥ for
every clause D with l̄ in it. [Heule et. al ]

Practical

• Used as a universal checking format for SAT solving.

• Used in the “World’s Largest Proof” for Pythagorean triples
[Heule, Kullman]

Theoretical

• Simulates many known proof systems and proof techniques.

• Has been shown to be polynomially equivalent to Extended
Frege/ Extended Resolution.
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Propositional proof systems
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Quantified Resolution Asymmetric Tautology [BHS 14]

• Suppose D is a clause with literal l̄ in it and we have a prefix
Π. The outer clause OD of D (wrt to l) is
the subset of D of all elements left of l) in the prefix.

{k ∈ D | lv(k) ≤Π lv(l), k 6= l̄}

.

• C has QRAT wrt to literal l in cnf φ with prefix Π when

Φ ∧ C̄ ∧ ŌD `1 ⊥

for every clause D with l̄ ∈ D.
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QRAT Addition

QRATA
Suppose C has QRAT wrt to ∃ literal l (which is in C ) in cnf φ
with prefix Π we can add C

Πφ

Π′φ ∧ C

• We can have variables in C that aren’t in Π

• Can simulate extension variables in this way
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Intuition (using strategies)

• Need to show: if Πφ ∧ C is false then Πφ is false

• Use the ∀ strategy from Πφ ∧ C to produce a strategy for Πφ.

• The ∀ player has strategy circuits σ′y for each ∀ variable y

• Only need to change our strategy when our game under the
winning strategy σ′ falsifies C only.
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Constructing Strategy Circuits σy (QRATA)
var(l) Other variables

OC ∨ l
∨̄

Outer clauses

∨ ∨ ∨

∧

⊕

σ′y

Leroy Chew, Judith Clymo Equivalences of Refutational QRAT 14 / 23



Universal reduction

The reduction rule UR removes universal variable l from clause
C ∨ l where lv(k) ≤Π lv(l) for every literal k ∈ C .

ΠΦ ∧ (C ∨ l)
(∀-red)

ΠΦ ∧ C

• the reduction rule is used in many QBF proof systems e.g
Extended Q-Resolution,

• If we have circuits σ′y for a universal player winning strategy
for the QBF ΠΦ ∧ C . We can use this for finding winning
circuits σy for the universal variables in ΠΦ ∧ (C ∨ l)
[Balabanov, Jiang 12].
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Constructing σvar(l) (UR)

σ′var(l)

∃ variables

C
∨̄

∨ ∧̄

∧

pol(l)
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QRAT on universals

QRAT allows universal reduction but also adds two new rules that
relax its condition.

QRATU
Suppose C has QRAT wrt to ∀ literal l (not in C ) in cnf φ with
prefix Π we can reduce C ∨ l

ΠΦ ∧ (C ∨ l)
(∀-red)

ΠΦ ∧ C

Extended universal reduction (EUR)

Adds dependency schemes to universal reduction
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Constructing σvar(l) (QRATU)

σ′var(l)

∃ variables

OC

∨̄ Outer clauses∨ ∨ ∨

∧

∨ ∧̄

∧

pol(l)
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Strategy Extraction for QRAT(UR)

• for remaining QRAT rules ATA and Clause Deletion we can
construct circuits in reverse trivially.

• no obvious method of strategy extraction for EUR, so we
can’t yet show full strategy extraction for all QRAT proofs.

• We can do polynomial-time strategy extraction for QRAT
without extended universal reduction (instead we just allow
UR). We call this QRAT(UR)

• strategy extraction alone gives us a number of proof
complexity results for QRAT(UR). . .
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Equivalence* with Extended Q-Resolution

• f NP is proof system f augmented with a rule that can derive
any propositional implicant (NP derivation).

• Useful when looking at QBF systems to factor out
propositional systems as a source of hardness.

Theorem (Chew 18)

Any refutational QBF proof system that has polynomial time
strategy extraction can be simulated by Extended Q-resolutionNP

Corollary

QRAT(UR) is simulated by Extended Q-resolutionNP.

Even better: we only need to show propositional Extended
Resolution can succinctly prove certain tautologies to show
QRAT(UR) is equivalent to Extended QU-resolution.
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What about QRAT with Extended Universal Reduction?

• With EUR no proof of strategy extraction yet, so we can’t yet
get the simulation by Extended Q-ResolutionNP (these are
equivalent)

• Strategy extraction is often beneficial because we sometimes
don’t just want to know if QBFs are true/false but to know
how to play the associated game (e.g. Chess instances)

• Strategy extraction is sometimes harmful because it means
certain obviously false QBFs conditionally become lower
bounds for our proof system. . .

• The family of false QBFs ∀z(z ↔ φ) (parametrised by QBF
φ) cannot have short proofs in a system with strategy
extraction unless NP = PSPACE
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QRAT+ [Egly Lonsing 18]

• `1∀ adds universal reduction to unit propagation, this is
common in QBF solving.

• Uses `1∀ to find asymmetric tautologies rather than `1.

• Has some extra conditions on which variables can be forall
reduced for the QRAT+ conditions (only those after l in the
prefix)

• we show that QRAT can simulate QRAT+
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Summary

• Refutational QRAT and QRAT+ are equivalent systems

• QRAT(UR) and QRAT+(UR) are p-simulated by Extended
Q-ResolutionNP

• If Extended Frege can prove certain propositional tautologies
in short proofs, then refutational QRAT(UR), QRAT+(UR)
and Extended QU-Resolution are all equivalent [might be
worth looking at some bounded arithmetic]

• It is unknown whether EUR allows strategy extraction/can be
simulated by Extended Q-ResolutionNP
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