Equivalences of Refutational QRAT

Leroy Chew, Judith Clymo

University of Leeds SAT 2019

Quantified Boolean Formulas (QBF)

- QBFs are propositional formulas with boolean quantifiers ranging over 0,1.
- Example: $\forall x \exists y. (x \leftrightarrow y)$

"True" because for each x there exists y such that $y = x$

• Quantifications are shorthands for connectives $\exists x P(x) = P(0) \vee P(1) \qquad \forall x P(x) = P(0) \wedge P(1)$

Example:

(1)
$$
\forall x \exists y. (x \leftrightarrow y)
$$

- $(2) \forall x. (x \leftrightarrow 0) \vee (x \leftrightarrow 1)$
- (3) $((0 \leftrightarrow 0) \vee (0 \leftrightarrow 1)) \wedge ((1 \leftrightarrow 0) \vee (1 \leftrightarrow 1))$
- (4) 1 (True)

• We consider QBFs in closed prenex form with CNF matrix.

• We consider QBFs in closed prenex form with CNF matrix. Example: $\forall y_1y_2\exists x_1x_2.(\neg y_1 \lor x_1) \land (y_2 \lor \neg x_2)$

- We consider QBFs in closed prenex form with CNF matrix. Example: $\forall y_1y_2\exists x_1x_2.(\neg y_1 \lor x_1) \land (y_2 \lor \neg x_2)$
- A QBF represents a two-player game between ∃ and ∀.

- We consider QBFs in closed prenex form with CNF matrix. Example: $\forall y_1y_2\exists x_1x_2.(\neg y_1 \lor x_1) \land (y_2 \lor \neg x_2)$
- A QBF represents a two-player game between ∃ and ∀.
- Play the prefix from left to right

- We consider QBFs in closed prenex form with CNF matrix. Example: $\forall y_1y_2\exists x_1x_2.(\neg y_1 \lor x_1) \land (y_2 \lor \neg x_2)$
- A QBF represents a two-player game between ∃ and ∀.
- Play the prefix from left to right
- ∃ wins a game if the matrix becomes true.

- We consider QBFs in closed prenex form with CNF matrix. Example: $\forall y_1y_2\exists x_1x_2.(\neg y_1 \lor x_1) \land (y_2 \lor \neg x_2)$
- A QBF represents a two-player game between ∃ and ∀.
- Play the prefix from left to right
- ∃ wins a game if the matrix becomes true.
- ∀ wins a game iff the matrix becomes false.

- We consider QBFs in closed prenex form with CNF matrix. Example: $\forall y_1y_2\exists x_1x_2.(\neg y_1 \lor x_1) \land (y_2 \lor \neg x_2)$
- A QBF represents a two-player game between ∃ and ∀.
- Play the prefix from left to right
- ∃ wins a game if the matrix becomes true.
- ∀ wins a game iff the matrix becomes false.
- A QBF is true iff there exists a winning strategy for \exists .

- We consider QBFs in closed prenex form with CNF matrix. Example: $\forall y_1y_2\exists x_1x_2.(\neg y_1 \lor x_1) \land (y_2 \lor \neg x_2)$
- A QBF represents a two-player game between ∃ and ∀.
- Play the prefix from left to right
- ∃ wins a game if the matrix becomes true.
- ∀ wins a game iff the matrix becomes false.
- A QBF is true iff there exists a winning strategy for \exists .
- A QBF is false iff there exists a winning strategy for \forall .

- We consider QBFs in closed prenex form with CNF matrix. Example: $\forall y_1y_2\exists x_1x_2.(\neg y_1 \lor x_1) \land (y_2 \lor \neg x_2)$
- A QBF represents a two-player game between ∃ and ∀.
- Play the prefix from left to right
- ∃ wins a game if the matrix becomes true.
- ∀ wins a game iff the matrix becomes false.
- A QBF is true iff there exists a winning strategy for ∃.
- A QBF is false iff there exists a winning strategy for \forall . Example:

 $\exists e \forall u. (e \vee u) \wedge (\neg e \vee \neg u)$

- We consider QBFs in closed prenex form with CNF matrix. Example: $\forall y_1y_2\exists x_1x_2.(\neg y_1 \lor x_1) \land (y_2 \lor \neg x_2)$
- A QBF represents a two-player game between ∃ and ∀.
- Play the prefix from left to right
- ∃ wins a game if the matrix becomes true.
- ∀ wins a game iff the matrix becomes false.
- A QBF is true iff there exists a winning strategy for \exists .
- A QBF is false iff there exists a winning strategy for \forall . Example:

$$
\exists e \forall u.\, (e \vee u) \wedge (\neg e \vee \neg u)
$$

 \forall wins by playing $u \leftarrow \neg e$.

Weak QBF proof systems

• Q-Resolution, QU-resolution and ∀Exp+Res.

Weak QBF proof systems

- Q-Resolution, QU-resolution and ∀Exp+Res.
- used to capture the performance of QBF solvers. Proof rules don't go much beyond the inference used in solving

QBF proofs

Weak QBF proof systems

- Q-Resolution, QU-resolution and ∀Exp+Res.
- used to capture the performance of QBF solvers. Proof rules don't go much beyond the inference used in solving
- Winning strategies can be feasibly extracted from these proofs.

QRAT- A universal checking format for QBF

[Biere, Heule, Seidl 14]

- Not associated with any type of QBF solver.
- Meant to capture all possible solving inferences including preprocessing.
- Strategy extraction known for True QBF [Heule, Seidl, Biere 14], so we focus on False QBF.
- Strategy extraction may not be possible if proofs are too short and strategies are too big.

A chess metagame

- Choose a colour white/black
- Play a game of chess with that colour
- Easy proved: if you choose the best colour you are guaranteed a win or draw if you play optimally.
- Hard strategy: but you still have to choose all the correct moves and doing so may be hard.

Leroy Chew, Judith Clymo [Equivalences of Refutational QRAT](#page-0-0) 6 / 23

The idea behind QRAT

Blocked Clause Addition

- A clause C is blocked on literal *l* in cnf ϕ if C resolved on *l* always produces a tautological clause.(i.e. for every D with \overline{I} in it $R(C, D) = C \vee D \setminus \{I, \overline{I}\}\$ always contains two complementary literals)
- A blocked clause can be added or removed without changing satisfiability.
- In fact as long as $\phi \models R(C, D)$ for every clause D with \bar{l} in it, C can be added or removed like a blocked clause.

Unit Propagation

- A *unit clause* is a clause with only one literal.
- In unit propagation we find any unit clauses x in CNF ϕ and add $x = 1$ (same as $\neg x = 0$) to our assignment.
- Adding $x = 1$ may create new unit clauses. We unit propagate until fixed point.
- $\phi \vdash_1 C$ means C is derived from ϕ via unit propagation.
- $\phi \vdash_1 C$ implies $\phi \models C$
- likewise $\phi \wedge \bar{C} \vdash_1 \bot$ implies $\phi \models C$
- E.g $\phi \wedge \bar{C} \vdash_1 \bot$ allows us to learn/infer clause C with only polynomial time checking.

DRAT (Deletion Resolution Asymmetric Tautology)

- Combines blocked literal addition with reverse unit propagation to get a powerful propositional proof system (details omitted here).
- We can add C ($l \in C$) to ϕ , when $\phi \wedge \neg R(C, D) \vdash_1 \bot$ for every clause D with l in it. [Heule et. al]

Practical

- Used as a universal checking format for SAT solving.
- Used in the "World's Largest Proof" for Pythagorean triples [Heule, Kullman]

Theoretical

- Simulates many known proof systems and proof techniques.
- Has been shown to be polynomially equivalent to Extended Frege/ Extended Resolution.

Propositional proof systems

Quantified Resolution Asymmetric Tautology [BHS 14]

• Suppose D is a clause with literal \overline{l} in it and we have a prefix Π . The *outer clause* O_D of D (wrt to I) is the subset of D of all elements left of ℓ) in the prefix.

 ${k \in D | |v(k) \leq n |v(l), k \neq \overline{l}}$

• C has QRAT wrt to literal l in cnf ϕ with prefix Π when

 $\Phi \wedge \bar{C} \wedge \bar{O}_D$ $\vdash_1 \bot$ for every clause D with $\overline{I} \in D$.

.

QRAT Addition

QRATA

Suppose C has QRAT wrt to \exists literal I (which is in C) in cnf ϕ with prefix Π we can add C

> Πφ $\Pi' \phi \wedge C$

- We can have variables in C that aren't in Π
- Can simulate extension variables in this way

• Need to show: if $\Pi \phi \wedge C$ is false then $\Pi \phi$ is false

- Need to show: if $\Pi \phi \wedge C$ is false then $\Pi \phi$ is false
- Use the \forall strategy from $\Pi \phi \wedge C$ to produce a strategy for $\Pi \phi$.

- Need to show: if $\Pi \phi \wedge C$ is false then $\Pi \phi$ is false
- Use the \forall strategy from $\Pi \phi \wedge C$ to produce a strategy for $\Pi \phi$.
- \bullet The \forall player has strategy circuits σ'_{y} for each \forall variable y

- Need to show: if $\Pi \phi \wedge C$ is false then $\Pi \phi$ is false
- Use the \forall strategy from $\Pi \phi \wedge C$ to produce a strategy for $\Pi \phi$.
- \bullet The \forall player has strategy circuits σ'_{y} for each \forall variable y
- Only need to change our strategy when our game under the winning strategy σ' falsifies C only.

- Need to show: if $\Pi \phi \wedge C$ is false then $\Pi \phi$ is false
- Use the \forall strategy from $\Pi \phi \wedge C$ to produce a strategy for $\Pi \phi$.
- \bullet The \forall player has strategy circuits $\sigma'_{\mathsf y}$ for each \forall variable $\mathsf y$
- Only need to change our strategy when our game under the winning strategy σ' falsifies C only.

Constructing a strategy

1. If the outer clause of some D, with $\overline{I} \in D$, is false we don't need to change strategy. Because if C is falsified we get a contradiction by $\phi \wedge \bar{C} \wedge \bar{O}_D \vdash_1 \bot$

- Need to show: if $\Pi \phi \wedge C$ is false then $\Pi \phi$ is false
- Use the \forall strategy from $\Pi \phi \wedge C$ to produce a strategy for $\Pi \phi$.
- \bullet The \forall player has strategy circuits $\sigma'_{\mathsf y}$ for each \forall variable $\mathsf y$
- Only need to change our strategy when our game under the winning strategy σ' falsifies C only.

Constructing a strategy

- 1. If the outer clause of some D, with $\overline{I} \in D$, is false we don't need to change strategy. Because if C is falsified we get a contradiction by $\phi \wedge \bar{C} \wedge \bar{O}_D \vdash_1 \bot$
- 2. If \overline{C} is satisfied by any literal we don't need to change.

- Need to show: if $\Pi \phi \wedge C$ is false then $\Pi \phi$ is false
- Use the \forall strategy from $\Pi \phi \wedge C$ to produce a strategy for $\Pi \phi$.
- \bullet The \forall player has strategy circuits $\sigma'_{\mathsf y}$ for each \forall variable $\mathsf y$
- Only need to change our strategy when our game under the winning strategy σ' falsifies C only.

Constructing a strategy

- 1. If the outer clause of some D, with $\overline{l} \in D$, is false we don't need to change strategy. Because if C is falsified we get a contradiction by $\phi \wedge \bar{C} \wedge \bar{O}_D \vdash_1 \bot$
- 2. If C is satisfied by any literal we don't need to change.
- 3. If all outer clauses ($\overline{I} \in D$) are satisfied, we can play as if l is true (case 2) without penalty. Some clause without ℓ in it will be falsified.

Universal reduction

The reduction rule UR removes universal variable l from clause $C \vee I$ where $|v(k)| \leq \pi |v(I)|$ for every literal $k \in C$.

$$
\frac{\Pi\Phi\wedge(C\vee I)}{\Pi\Phi\wedge C}\,(\forall\text{-red})
$$

- the reduction rule is used in many QBF proof systems e.g Extended Q-Resolution,
- If we have circuits σ'_{y} for a universal player winning strategy for the QBF $\Pi \Phi \wedge C$. We can use this for finding winning circuits σ_v for the universal variables in $\Pi \Phi \wedge (C \vee l)$ [Balabanov, Jiang 12].

Constructing $\sigma_{var(l)}$ (UR)

QRAT on universals

QRAT allows universal reduction but also adds two new rules that relax its condition.

QRATU

Suppose C has QRAT wrt to \forall literal I (not in C) in cnf ϕ with prefix Π we can reduce $C \vee I$

$$
\frac{\Pi\Phi\wedge(C\vee I)}{\Pi\Phi\wedge C}\,(\forall\text{-red})
$$

Extended universal reduction (EUR)

Adds dependency schemes to universal reduction

Strategy Extraction for QRAT(UR)

- for remaining QRAT rules ATA and Clause Deletion we can construct circuits in reverse trivially.
- no obvious method of strategy extraction for EUR, so we can't yet show full strategy extraction for all QRAT proofs.
- We can do polynomial-time strategy extraction for QRAT without extended universal reduction (instead we just allow UR). We call this QRAT(UR)
- strategy extraction alone gives us a number of proof complexity results for QRAT(UR). . .

Equivalence* with Extended Q-Resolution

- f^{NP} is proof system f augmented with a rule that can derive any propositional implicant (NP derivation).
- Useful when looking at QBF systems to factor out propositional systems as a source of hardness.

Theorem (Chew 18)

Any refutational QBF proof system that has polynomial time strategy extraction can be simulated by Extended Q-resolution NP

Corollary

 $QRAT(UR)$ is simulated by Extended Q-resolution^{NP}.

Even better: we only need to show propositional Extended Resolution can succinctly prove certain tautologies to show QRAT(UR) is equivalent to Extended QU-resolution.

What about QRAT with Extended Universal Reduction?

- With EUR no proof of strategy extraction yet, so we can't yet get the simulation by Extended Q-Resolution^{NP} (these are equivalent)
- Strategy extraction is often beneficial because we sometimes don't just want to know if QBFs are true/false but to know how to play the associated game (e.g. Chess instances)
- Strategy extraction is sometimes harmful because it means certain obviously false QBFs conditionally become lower bounds for our proof system. . .
- The family of false QBFs $\forall z(z \leftrightarrow \phi)$ (parametrised by QBF ϕ) cannot have short proofs in a system with strategy extraction unless $NP = PSPACE$

QRAT+ [Egly Lonsing 18]

- $\vdash_{1\forall}$ adds universal reduction to unit propagation, this is common in QBF solving.
- Uses $\vdash_{1\forall}$ to find asymmetric tautologies rather than \vdash_1 .
- Has some extra conditions on which variables can be forall reduced for the QRAT+ conditions (only those after ℓ in the prefix)
- we show that QRAT can simulate $QRAT+$

Summary

- • Refutational QRAT and QRAT + are equivalent systems
- $QRAT(UR)$ and $QRAT+(UR)$ are p-simulated by Extended Q-ResolutionNP
- If Extended Frege can prove certain propositional tautologies in short proofs, then refutational $QRAT(UR)$, $QRAT+(UR)$ and Extended QU-Resolution are all equivalent [might be worth looking at some bounded arithmetic]
- It is unknown whether EUR allows strategy extraction/can be simulated by Extended Q-Resolution^{NP}