Equivalences of Refutational QRAT

Leroy Chew, Judith Clymo

University of Leeds SAT 2019

Quantified Boolean Formulas (QBF)

- QBFs are propositional formulas with boolean quantifiers ranging over 0,1.
- Example: $\forall x \exists y. (x \leftrightarrow y)$

"True" because for each x there exists y such that y = x

• Quantifications are shorthands for connectives $\exists x P(x) = P(0) \lor P(1) \qquad \forall x P(x) = P(0) \land P(1)$

Example:

(1)
$$\forall x \exists y. (x \leftrightarrow y)$$

(2) $\forall x. (x \leftrightarrow 0) \lor (x \leftrightarrow 1)$
(3) $((0 \leftrightarrow 0) \lor (0 \leftrightarrow 1)) \land ((1 \leftrightarrow 0) \lor (1 \leftrightarrow 1))$
(4) 1 (True)

• We consider QBFs in closed prenex form with CNF matrix.

We consider QBFs in closed prenex form with CNF matrix.
 Example: ∀y₁y₂∃x₁x₂. (¬y₁ ∨ x₁) ∧ (y₂ ∨ ¬x₂)

- We consider QBFs in closed prenex form with CNF matrix.
 Example: ∀y₁y₂∃x₁x₂. (¬y₁ ∨ x₁) ∧ (y₂ ∨ ¬x₂)
- A QBF represents a two-player game between \exists and \forall .

- We consider QBFs in closed prenex form with CNF matrix.
 Example: ∀y₁y₂∃x₁x₂. (¬y₁ ∨ x₁) ∧ (y₂ ∨ ¬x₂)
- A QBF represents a two-player game between \exists and \forall .
- Play the prefix from left to right

- We consider QBFs in closed prenex form with CNF matrix.
 Example: ∀y₁y₂∃x₁x₂. (¬y₁ ∨ x₁) ∧ (y₂ ∨ ¬x₂)
- A QBF represents a two-player game between \exists and \forall .
- Play the prefix from left to right
- ∃ wins a game if the matrix becomes true.

- We consider QBFs in closed prenex form with CNF matrix.
 Example: ∀y₁y₂∃x₁x₂. (¬y₁ ∨ x₁) ∧ (y₂ ∨ ¬x₂)
- A QBF represents a two-player game between \exists and \forall .
- Play the prefix from left to right
- ∃ wins a game if the matrix becomes true.
- ∀ wins a game iff the matrix becomes false.

- We consider QBFs in closed prenex form with CNF matrix.
 Example: ∀y₁y₂∃x₁x₂. (¬y₁ ∨ x₁) ∧ (y₂ ∨ ¬x₂)
- A QBF represents a two-player game between \exists and \forall .
- Play the prefix from left to right
- ∃ wins a game if the matrix becomes true.
- ∀ wins a game iff the matrix becomes false.
- A QBF is true iff there exists a winning strategy for \exists .

- We consider QBFs in closed prenex form with CNF matrix.
 Example: ∀y₁y₂∃x₁x₂. (¬y₁ ∨ x₁) ∧ (y₂ ∨ ¬x₂)
- A QBF represents a two-player game between \exists and \forall .
- Play the prefix from left to right
- ∃ wins a game if the matrix becomes true.
- ∀ wins a game iff the matrix becomes false.
- A QBF is true iff there exists a winning strategy for \exists .
- A QBF is false iff there exists a winning strategy for ∀.

- We consider QBFs in closed prenex form with CNF matrix.
 Example: ∀y₁y₂∃x₁x₂. (¬y₁ ∨ x₁) ∧ (y₂ ∨ ¬x₂)
- A QBF represents a two-player game between \exists and \forall .
- Play the prefix from left to right
- ∃ wins a game if the matrix becomes true.
- ∀ wins a game iff the matrix becomes false.
- A QBF is true iff there exists a winning strategy for \exists .
- A QBF is false iff there exists a winning strategy for ∀.
 Example:

 $\exists e \forall u. (e \lor u) \land (\neg e \lor \neg u)$

- We consider QBFs in closed prenex form with CNF matrix.
 Example: ∀y₁y₂∃x₁x₂. (¬y₁ ∨ x₁) ∧ (y₂ ∨ ¬x₂)
- A QBF represents a two-player game between ∃ and ∀.
- Play the prefix from left to right
- ∃ wins a game if the matrix becomes true.
- ∀ wins a game iff the matrix becomes false.
- A QBF is true iff there exists a winning strategy for \exists .
- A QBF is false iff there exists a winning strategy for ∀.
 Example:

$$\exists e \forall u. (e \lor u) \land (\neg e \lor \neg u)$$

 \forall wins by playing $u \leftarrow \neg e$.

Weak QBF proof systems

• Q-Resolution, QU-resolution and $\forall Exp+Res$.

QBF proofs

Weak QBF proof systems

- Q-Resolution, QU-resolution and $\forall Exp+Res$.
- used to capture the performance of QBF solvers. Proof rules don't go much beyond the inference used in solving

QBF proofs

Weak QBF proof systems

- Q-Resolution, QU-resolution and $\forall Exp+Res$.
- used to capture the performance of QBF solvers. Proof rules don't go much beyond the inference used in solving
- Winning strategies can be feasibly extracted from these proofs.

QRAT- A universal checking format for QBF

[Biere, Heule, Seidl 14]

- Not associated with any type of QBF solver.
- Meant to capture all possible solving inferences including preprocessing.
- Strategy extraction known for True QBF [Heule, Seidl, Biere 14], so we focus on False QBF.
- Strategy extraction may not be possible if proofs are too short and strategies are too big.

A chess metagame

- Choose a colour white/black
- Play a game of chess with that colour
- *Easy proved:* if you choose the best colour you are guaranteed a win or draw if you play optimally.
- *Hard strategy:* but you still have to choose all the correct moves and doing so may be hard.

Leroy Chew, Judith Clymo

Equivalences of Refutational QRAT

The idea behind QRAT

Blocked Clause Addition

- A clause C is blocked on literal l in cnf φ if C resolved on l always produces a tautological clause.(i.e. for every D with l
 in it R(C, D) = C ∨ D \ {l, l} always contains two
 complementary literals)
- A blocked clause can be added or removed without changing satisfiability.
- In fact as long as φ ⊨ R(C, D) for every clause D with l
 in it, C can be added or removed like a blocked clause.

Unit Propagation

- A *unit clause* is a clause with only one literal.
- In *unit propagation* we find any unit clauses x in CNF φ and add x = 1 (same as ¬x = 0) to our assignment.
- Adding x = 1 may create new unit clauses. We unit propagate until fixed point.
- $\phi \vdash_1 C$ means C is derived from ϕ via unit propagation.
- $\phi \vdash_1 C$ implies $\phi \models C$
- likewise $\phi \land \overline{C} \vdash_1 \bot$ implies $\phi \vDash C$
- E.g φ ∧ C
 ⊢₁ ⊥ allows us to learn/infer clause C with only polynomial time checking.

DRAT (Deletion Resolution Asymmetric Tautology)

- Combines blocked literal addition with reverse unit propagation to get a powerful propositional proof system (details omitted here).
- We can add C (*l* ∈ C) to φ, when φ ∧ ¬R(C, D) ⊢₁ ⊥ for every clause D with *l* in it. [Heule et. al]

Practical

- Used as a universal checking format for SAT solving.
- Used in the "World's Largest Proof" for Pythagorean triples [Heule, Kullman]

Theoretical

- Simulates many known proof systems and proof techniques.
- Has been shown to be polynomially equivalent to Extended Frege/ Extended Resolution.

Leroy Chew, Judith Clymo

Propositional proof systems

Leroy Chew, Judith Clymo

Quantified Resolution Asymmetric Tautology [BHS 14]

Suppose D is a clause with literal *l* in it and we have a prefix Π. The *outer clause* O_D of D (wrt to l) is the subset of D of all elements left of l) in the prefix.

 $\{k \in D \mid \mathsf{lv}(k) \leq_{\Pi} \mathsf{lv}(l), k \neq \overline{l}\}$

• C has QRAT wrt to literal / in cnf ϕ with prefix Π when

 $\Phi \land \overline{C} \land \overline{O}_D \vdash_1 \bot$ for every clause D with $\overline{l} \in D$.

QRAT Addition

QRATA

Suppose *C* has QRAT wrt to \exists literal *I* (which is in *C*) in cnf ϕ with prefix Π we can add *C*

 $\frac{\Pi\phi}{\Pi'\phi\wedge C}$

- We can have variables in *C* that aren't in ⊓
- Can simulate extension variables in this way

• Need to show: if $\Pi \phi \wedge C$ is false then $\Pi \phi$ is false

- Need to show: if $\Pi \phi \wedge C$ is false then $\Pi \phi$ is false
- Use the \forall strategy from $\Pi \phi \wedge C$ to produce a strategy for $\Pi \phi$.

- Need to show: if $\Pi \phi \wedge C$ is false then $\Pi \phi$ is false
- Use the \forall strategy from $\Pi \phi \wedge C$ to produce a strategy for $\Pi \phi$.
- The \forall player has strategy circuits σ'_{y} for each \forall variable y

- Need to show: if $\Pi \phi \wedge C$ is false then $\Pi \phi$ is false
- Use the \forall strategy from $\Pi \phi \wedge C$ to produce a strategy for $\Pi \phi$.
- The ∀ player has strategy circuits σ'_y for each ∀ variable y
- Only need to change our strategy when our game under the winning strategy σ' falsifies C only.

- Need to show: if $\Pi \phi \wedge C$ is false then $\Pi \phi$ is false
- Use the \forall strategy from $\Pi \phi \wedge C$ to produce a strategy for $\Pi \phi$.
- The ∀ player has strategy circuits σ'_y for each ∀ variable y
- Only need to change our strategy when our game under the winning strategy σ' falsifies C only.

Constructing a strategy

 If the outer clause of some D, with I ∈ D, is false we don't need to change strategy. Because if C is falsified we get a contradiction by φ ∧ C̄ ∧ Ō_D ⊢₁ ⊥

- Need to show: if $\Pi \phi \wedge C$ is false then $\Pi \phi$ is false
- Use the \forall strategy from $\Pi \phi \wedge C$ to produce a strategy for $\Pi \phi$.
- The ∀ player has strategy circuits σ'_y for each ∀ variable y
- Only need to change our strategy when our game under the winning strategy σ' falsifies C only.

Constructing a strategy

- If the outer clause of some D, with I ∈ D, is false we don't need to change strategy. Because if C is falsified we get a contradiction by φ ∧ C̄ ∧ Ō_D ⊢₁ ⊥
- 2. If C is satisfied by any literal we don't need to change.

- Need to show: if $\Pi \phi \wedge C$ is false then $\Pi \phi$ is false
- Use the \forall strategy from $\Pi \phi \wedge C$ to produce a strategy for $\Pi \phi$.
- The ∀ player has strategy circuits σ'_y for each ∀ variable y
- Only need to change our strategy when our game under the winning strategy σ' falsifies C only.

Constructing a strategy

- 1. If the outer clause of some D, with $\overline{l} \in D$, is false we don't need to change strategy. Because if C is falsified we get a contradiction by $\phi \land \overline{C} \land \overline{O}_D \vdash_1 \bot$
- 2. If C is satisfied by any literal we don't need to change.
- If all outer clauses (*l* ∈ *D*) are satisfied, we can play as if *l* is true (case 2) without penalty. Some clause without *l* in it will be falsified.

Leroy Chew, Judith Clymo

Universal reduction

The reduction rule UR removes universal variable *l* from clause $C \vee l$ where $lv(k) \leq_{\Pi} lv(l)$ for every literal $k \in C$.

$$\frac{ \Pi \Phi \land (C \lor I) }{ \Pi \Phi \land C } (\forall \text{-red})$$

- the reduction rule is used in many QBF proof systems e.g Extended Q-Resolution,
- If we have circuits σ'_y for a universal player winning strategy for the QBF ΠΦ ∧ C. We can use this for finding winning circuits σ_y for the universal variables in ΠΦ ∧ (C ∨ I) [Balabanov, Jiang 12].

QRAT on universals

QRAT allows universal reduction but also adds two new rules that relax its condition.

QRATU

Suppose C has QRAT wrt to \forall literal / (not in C) in cnf ϕ with prefix Π we can reduce $C \lor I$

$$\frac{ \Pi \Phi \land (C \lor I) }{ \Pi \Phi \land C } (\forall \text{-red})$$

Extended universal reduction (EUR)

Adds dependency schemes to universal reduction

Leroy Chew, Judith Clymo

Strategy Extraction for QRAT(UR)

- for remaining QRAT rules ATA and Clause Deletion we can construct circuits in reverse trivially.
- no obvious method of strategy extraction for EUR, so we can't yet show full strategy extraction for all QRAT proofs.
- We can do polynomial-time strategy extraction for QRAT without extended universal reduction (instead we just allow UR). We call this QRAT(UR)
- strategy extraction alone gives us a number of proof complexity results for QRAT(UR)...

Equivalence* with Extended Q-Resolution

- *f*^{NP} is proof system *f* augmented with a rule that can derive any propositional implicant (NP derivation).
- Useful when looking at QBF systems to factor out propositional systems as a source of hardness.

Theorem (Chew 18)

Any refutational QBF proof system that has polynomial time strategy extraction can be simulated by Extended Q-resolution^{NP}

Corollary

QRAT(UR) is simulated by Extended Q-resolution^{NP}.

Even better: we only need to show propositional Extended Resolution can succinctly prove certain tautologies to show QRAT(UR) is equivalent to Extended QU-resolution.

What about QRAT with Extended Universal Reduction?

- With EUR no proof of strategy extraction yet, so we can't yet get the simulation by Extended Q-Resolution^{NP} (these are equivalent)
- Strategy extraction is often beneficial because we sometimes don't just want to know if QBFs are true/false but to know how to play the associated game (e.g. Chess instances)
- Strategy extraction is sometimes harmful because it means certain obviously false QBFs conditionally become lower bounds for our proof system...
- The family of false QBFs ∀z(z ↔ φ) (parametrised by QBF φ) cannot have short proofs in a system with strategy extraction unless NP = PSPACE

QRAT+ [Egly Lonsing 18]

- ⊢_{1∀} adds universal reduction to unit propagation, this is common in QBF solving.
- Uses ⊢_{1∀} to find asymmetric tautologies rather than ⊢₁.
- Has some extra conditions on which variables can be forall reduced for the QRAT+ conditions (only those after / in the prefix)
- we show that QRAT can simulate QRAT+

Summary

- Refutational QRAT and QRAT+ are equivalent systems
- QRAT(UR) and QRAT+(UR) are p-simulated by Extended Q-Resolution $^{\sf NP}$
- If Extended Frege can prove certain propositional tautologies in short proofs, then refutational QRAT(UR), QRAT+(UR) and Extended QU-Resolution are all equivalent [might be worth looking at some bounded arithmetic]
- It is unknown whether EUR allows strategy extraction/can be simulated by Extended Q-Resolution^{NP}