Circular (Yet Sound) Proofs

Massimo Lauria SAT 2019, Lisbon - July, 10th

Sapienza - Università di Roma

(joint work with Albert Atserias)

Tree Resolution

Regular Resolution

Resolution

(trees)

(read-once dags)

(dags)

Tree Resolution		(trees)
Regular Resolution		(read-once dags)
Resolution		(dags)
Circular Resolution	(NEW!)	(cycles)

Cycles in proof???

Cycles in proof???

We introduce cycles while retaining **soundness** We get **exponential gain** over resolution

I. What is a circular proof?

Standard rules:

$$\frac{C \lor X \quad D \lor \overline{X}}{C \lor D} \qquad \frac{C}{C \lor D} \qquad \overline{X \lor \overline{X}}$$

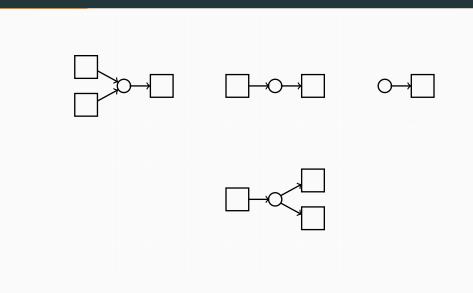
Standard rules:

$$\frac{C \lor X \quad D \lor \overline{X}}{C \lor D} \qquad \frac{C}{C \lor D} \qquad \overline{X \lor \overline{X}}$$

Symmetric rules:

$$\frac{C \lor X \quad C \lor \overline{X}}{C} \qquad \frac{C}{C \lor X \quad C \lor \overline{X}} \qquad \overline{X \lor \overline{X}}$$

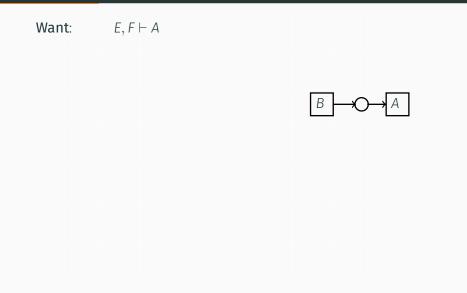
Graphical representation of proof inferences

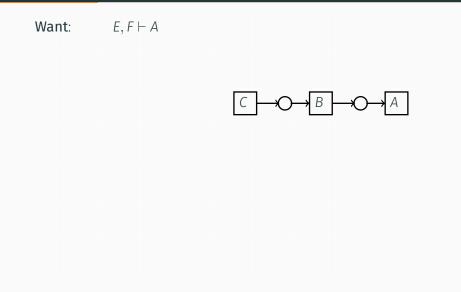


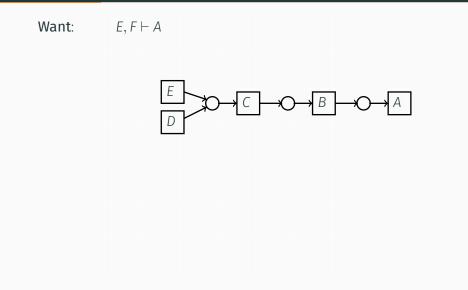
Formula vertices: 🛛 👘 Inference vertices: O

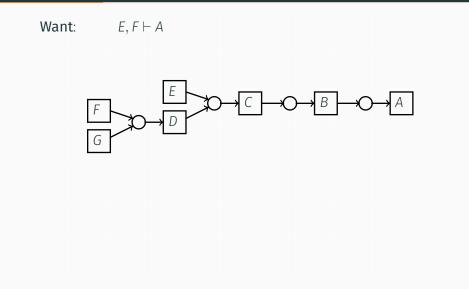
Want:	$E, F \vdash A$		

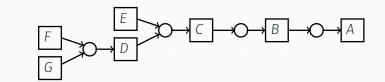
Want:	$E,F\vdash A$		
			A

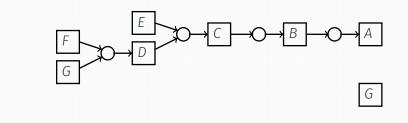


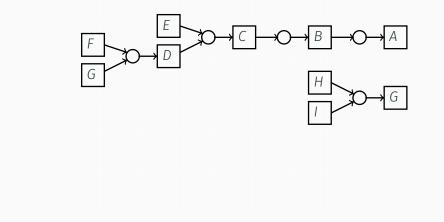


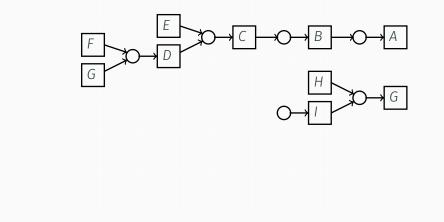


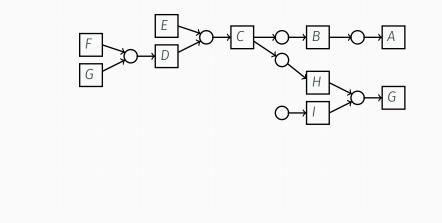


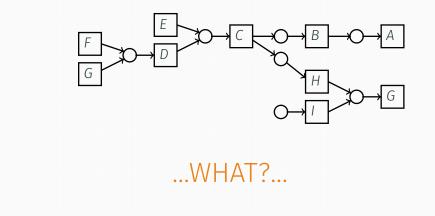




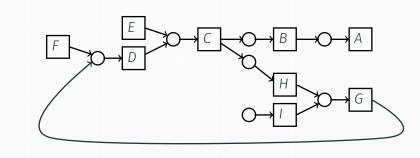




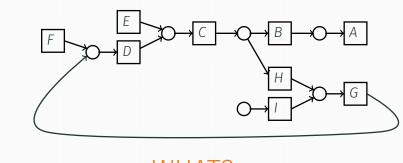




Want: $E, F \vdash A$ Subgoal: $E, F \vdash G$



....WHAT?...

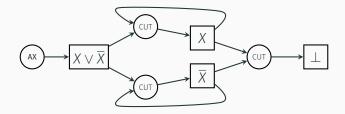


Definition: A pre-proof is

- \cdot a graph of a resolution proof with the symmetric rules,
- where occurrences of the same formula can be identified (potentially creating cycles)

Remark. formula and inference vertices form a bipartition.

Guess what? Circular arguments may be unsound



Need to keep track of how many times a formula vertex \Box is

used as a premise

VS

deduced as a consequence

Need to keep track of how many times a formula vertex \Box is

used as a premise

VS

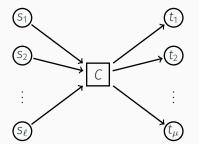
deduced as a consequence

Solution.

We assign a flow in \mathbb{R}^+ to each inference vertex **O**.

Flow and balance

Flow is a positive real assigned to each inference vertex.



We define the balance of a formula vertex C as

$$\mathsf{Bal}_{\square} = \sum_{i=1}^{\ell} \mathrm{flow}(s_i) - \sum_{i=1}^{\mu} \mathrm{flow}(t_i)$$

Definition: A circular resolution proof of A from A_1, \ldots, A_m is a pre-proof for which we can assign a flow to each inference vertex so that

- when $\operatorname{Bal}_{[C]} < 0$, then $C \in \{A_1, \ldots, A_m\}$,
- there is a formula vertex A with $Bal_{\square} > 0$.

Definition: A circular resolution proof of A from A_1, \ldots, A_m is a pre-proof for which we can assign a flow to each inference vertex so that

- when $\operatorname{Bal}_{[C]} < 0$, then $C \in \{A_1, \ldots, A_m\}$,
- there is a formula vertex A with $Bal_{\square} > 0$.

Notes:

• efficient verification: linear programming techniques.

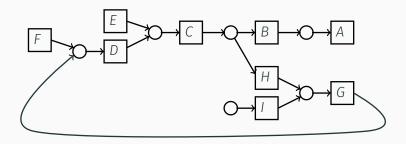
Theorem:

If there is a circular proof of A from A_1, \ldots, A_m , then every assignment that satisfies A_1, \ldots, A_m also satisfies A.

Proofs:

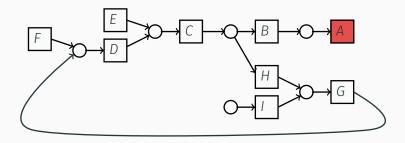
- 1st proof: combinatorial
- 2nd proof: via linear programming
- \cdot 3rd proof: equivalence with another proof system

Want: $E, F \vdash A$



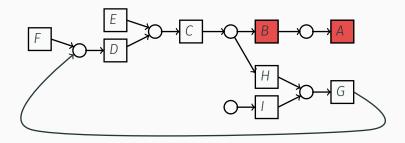
Flow assignment: all 1's.

Want: $E, F \vdash A$



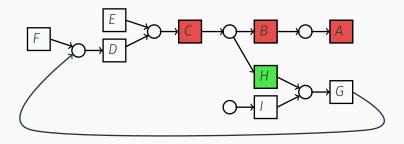
Flow assignment: all 1's.

Want: $E, F \vdash A$



Flow assignment: all 1's.

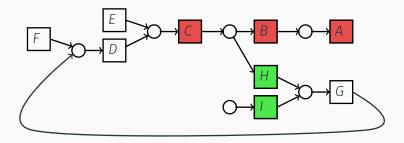
Want: $E, F \vdash A$



Flow assignment: all 1's.

Important. in split rule at most one consequence false.

Want: $E, F \vdash A$

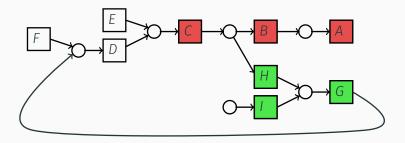


Flow assignment: all 1's.

Important. in split rule at most one consequence false.

Sound example

Want: $E, F \vdash A$

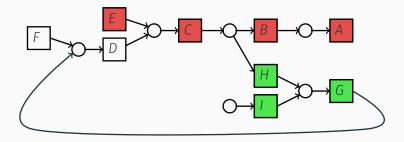


Flow assignment: all 1's.

Important. in split rule at most one consequence false.

Sound example

Want: $E, F \vdash A$

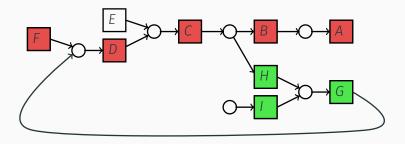


Flow assignment: all 1's.

Important. in split rule at most one consequence false.

Sound example

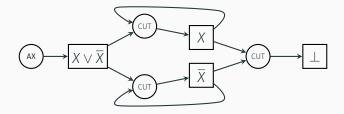
Want: $E, F \vdash A$



Flow assignment: all 1's.

Important. in split rule at most one consequence false.

Unsound example



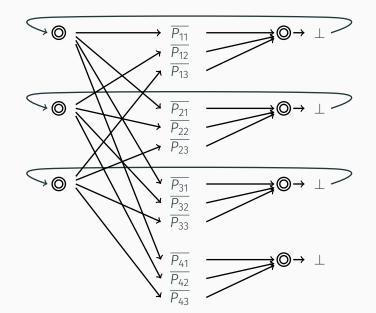
Impossible to assign flow

II. Strength of Circular Resolution

Theorem:

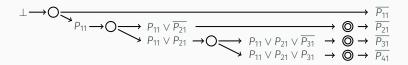
 PHP_n^{n+1} has poly-size circular resolution refutations.

Circular proof of PHP₃⁴



15/22

Weakening and cleaning for hole 1



Sherali-Adams proofs on Boolean variables

Variables: X_1, \ldots, X_n and $\overline{X_1}, \ldots, \overline{X_n}$ Axioms:

$$\begin{array}{ll} X_i \geq 0 & X_i^2 - X_i \geq 0 & X_i + \overline{X_i} - 1 \geq 0 \\ 1 - X_i \geq 0 & -X_i + X_i^2 \geq 0 & 1 - X_i - \overline{X_i} \geq 0 \end{array}$$

Sherali-Adams proofs on Boolean variables

Variables: X_1, \ldots, X_n and $\overline{X_1}, \ldots, \overline{X_n}$ Axioms:

$$\begin{array}{lll} X_i \geq 0 & X_i^2 - X_i \geq 0 & X_i + \overline{X_i} - 1 \geq 0 \\ 1 - X_i \geq 0 & -X_i + X_i^2 \geq 0 & 1 - X_i - \overline{X_i} \geq 0 \end{array}$$

SA Proofs: A refutation of $P_1 \ge 0, ..., P_m \ge 0$ (including the axioms) is a polynomial identity of the form

$$\sum_{j=1}^{m} P_j Q_j + Q_0 = -1 \quad \text{where } Q_j = \sum_{j \in K} c_j^2 \prod_{i \in I_j} X_i \prod_{i \in J_j} \overline{X_i}.$$

Monomial size: number of monomials in P_iQ_i and Q_0 .

Resolution cp Sherali-Adams

Multiplicative encoding of clauses:

$$\bigvee_{i\in I} X_i \vee \bigvee_{i\in J} \overline{X_i} \quad \mapsto \quad -\prod_{i\in I} \overline{X_i} \prod_{j\in J} X_j \ge 0$$

Additive encoding of clauses:

$$\bigvee_{i \in I} X_i \lor \bigvee_{i \in J} \overline{X_i} \quad \mapsto \quad \sum_{i \in I} X_i + \sum_{j \in J} \overline{X_i} - 1 \ge 0$$

Strength comparison:

- Sherali-Adams refutes PHP easily
- Sherali-Adams efficiently simulates Resolution (see [Dantchev 2007])

Theorem:

Circular Resolution \equiv_p Sherali-Adams.

(for both multiplicative and additive encodings)

Proof of equivalence:

- \leq_p : extension of [Dantchev 2007, ALN16].
- $\cdot \geq_p$: a normal form result for Sherali-Adams proofs.

III. Conclusions

- 1- Circular proofs are not always meaningless.
- 2- PHP has poly-size proofs in Circular Resolution.
- 3- Indeed Circular Resolution \equiv_p Sherali-Adams.

TreeLike Resolution $<_p$ Resolution $<_p$ Circular ResolutionTreeLike BD-Frege \equiv_p BD-Frege $<_p$ Circular BD-FregeTreeLike Frege \equiv_p Frege \equiv_p Circular Frege

[IMM-S, SAT 2017] Dual rail encoding for MaxSAT resolution

- \cdot stronger than resolution
- circular Resolution efficiently simulates Dual Rail MaxSAT resolution refutations. [Vinyals, 2018]

Thank you!