
DRMaxSAT with MaxHS: First Contact

A.Morgado1 A.Ignatiev1,4 M.L.Bonet2 J.Marques-Silva1

S.Buss3

1 Faculty of Science,University of Lisbon, Portugal

2 Computer Science, Universidad Politécnica de Cataluna, Barcelona, Spain

3 Department of Mathematics, University of California, San Diego, USA

4 ISDCT SB RAS, Irkutsk, Russia

SAT 2019



Motivation

• Success of Conflict-Driven Clause Learning (CDCL) demonstrates
the reach of the Resolution proof system

• From proof complexity point of view, Resolution is regarded as a
rather weak proof system
• Recent efforts for developing efficient implementations of stronger

proof systems:

– Extended Resolution (ExtRes)
– DRAT
– Cutting Planes (CP)
– Dual-Rail Maximum Satisfiability (DRMaxSAT)



Motivation

• Success of Conflict-Driven Clause Learning (CDCL) demonstrates
the reach of the Resolution proof system

• From proof complexity point of view, Resolution is regarded as a
rather weak proof system

• Recent efforts for developing efficient implementations of stronger
proof systems:

– Extended Resolution (ExtRes)
– DRAT
– Cutting Planes (CP)
– Dual-Rail Maximum Satisfiability (DRMaxSAT)



Motivation

• Success of Conflict-Driven Clause Learning (CDCL) demonstrates
the reach of the Resolution proof system

• From proof complexity point of view, Resolution is regarded as a
rather weak proof system
• Recent efforts for developing efficient implementations of stronger

proof systems:

– Extended Resolution (ExtRes)
– DRAT
– Cutting Planes (CP)
– Dual-Rail Maximum Satisfiability (DRMaxSAT)



DRMaxSAT - General Idea

• Translates a CNF formula F using the Dual-Rail Encoding

• Uses a MaxSAT algorithm to obtain the cost of the encoded
formula

• Determines the satisfiability of F based on the cost of the encoded
formula



DRMaxSAT - Previous work 1/3

Weighted DRMaxSAT simulates general resolution.

DRMaxSAT refutes in polynomial time:

• Pigeonhole Principle (PHP)

• Doubled Pigeonhole principle (2PHP)

MaxSAT algorithms based on:

• MaxSAT Resolution [AAAI18]

• Core-Guided MaxSAT Algorithms [SAT17]

• Hitting Set-based MaxSAT Approach: MaxHS-like Algorithm [SAT19]



DRMaxSAT - Previous work 1/3

Weighted DRMaxSAT simulates general resolution.

DRMaxSAT refutes in polynomial time:

• Pigeonhole Principle (PHP)

• Doubled Pigeonhole principle (2PHP)

MaxSAT algorithms based on:

• MaxSAT Resolution [AAAI18]

• Core-Guided MaxSAT Algorithms [SAT17]

• Hitting Set-based MaxSAT Approach: MaxHS-like Algorithm [SAT19]



DRMaxSAT - Previous work 1/3

Weighted DRMaxSAT simulates general resolution.

DRMaxSAT refutes in polynomial time:

• Pigeonhole Principle (PHP)

• Doubled Pigeonhole principle (2PHP)

MaxSAT algorithms based on:

• MaxSAT Resolution [AAAI18]

• Core-Guided MaxSAT Algorithms [SAT17]

• Hitting Set-based MaxSAT Approach: MaxHS-like Algorithm [SAT19]



DRMaxSAT - Previous work 1/3

Weighted DRMaxSAT simulates general resolution.

DRMaxSAT refutes in polynomial time:

• Pigeonhole Principle (PHP)

• Doubled Pigeonhole principle (2PHP)

MaxSAT algorithms based on:

• MaxSAT Resolution [AAAI18]

• Core-Guided MaxSAT Algorithms [SAT17]

• Hitting Set-based MaxSAT Approach: MaxHS-like Algorithm [SAT19]



DRMaxSAT - Previous work 2/3

0 20 40 60 80 100
instances

0

200

400

600

800

1000

1200

1400

1600

1800

C
PU

tim
e

(s
)

MaxHS
MSCG
LMHS
LMHS-nes
OpenWBO16
Eva500a
lingeling

PHP

0 10 20 30 40 50 60 70
instances

0

200

400

600

800

1000

1200

1400

1600

1800

C
PU

tim
e

(s
)

MaxHS
MSCG
LMHS
LMHS-nes
OpenWBO16
Eva500a
lingeling

2PHP



Outline

Basic MaxHS Algorithm

DRMaxSAT

DRMaxSAT/basic MaxHS vs Pigeonhole Principle

DRMaxSAT/basic MaxHS vs Doubled Pigeonhole Principle

Conclusions



Outline

Basic MaxHS Algorithm

DRMaxSAT

DRMaxSAT/basic MaxHS vs Pigeonhole Principle

DRMaxSAT/basic MaxHS vs Doubled Pigeonhole Principle

Conclusions



SAT

• F - CNF formula: conjunction of clauses

• Clause: disjunction of literals

• Literal: variable x or its completement ¬x
• A - Assignment: mapping from variables to {0, 1}

• SAT problem: Given F determine if there is an assignment A for
F that satisfies all its clauses, otherwise F is unsatisfiable.



MaxSAT

• Partial MaxSAT problem < H,S >:

– H - set of hard clauses
– S - set of soft clauses

Goal: Find an assignment A that satisfies all clauses in H and
maximizes the number of satisfied clauses in S

• Cost of an assignment: number of unsatisfied clauses in S



MaxSAT

• Partial MaxSAT problem < H,S >:

– H - set of hard clauses
– S - set of soft clauses

Goal: Find an assignment A that satisfies all clauses in H and
maximizes the number of satisfied clauses in S

• Cost of an assignment: number of unsatisfied clauses in S



Basic MaxHS-like Algorithm

• MaxHS is a relatively recent MaxSAT approach:

– based on the hitting set duality between MCSes and MUSes
– results in simpler oracle calls, but at the cost of possibly

exponentially larger number of calls

Input : < H,S > WCNF formula
1 K ← ∅
2 while true do
3 h← MinimumHS(K )
4 (st, µ)← SAT(H ∪ S \ h)
5 if st then return µ
6 K ← K ∪ {µ}



Basic MaxHS-like Algorithm

• MaxHS is a relatively recent MaxSAT approach:

– based on the hitting set duality between MCSes and MUSes
– results in simpler oracle calls, but at the cost of possibly

exponentially larger number of calls

Input : < H,S > WCNF formula
1 K ← ∅
2 while true do
3 h← MinimumHS(K )
4 (st, µ)← SAT(H ∪ S \ h)
5 if st then return µ
6 K ← K ∪ {µ}



Example Basic MaxHS-like Algorithm

H = {(¬x1 ∨ ¬x2)} S = {s1 : (x1), s2 : (x2), s3 : (¬x2)}

MHS SAT

h = {},
S \ h = {(x1), (x2), (¬x2)}

Unsat, Core: (¬x1 ∨ ¬x2), (x1), (x2)

New set to hit: k1 = {s1, s2}

h = {s1}, S \ h = {(x2), (¬x2)}

Unsat, Core: (x2), (¬x2)

New set to hit: k2 = {s2, s3}

h = {s2}, S \ h = {(x1), (¬x2)}

Sat



Example Basic MaxHS-like Algorithm

H = {(¬x1 ∨ ¬x2)} S = {s1 : (x1), s2 : (x2), s3 : (¬x2)}

MHS SATh = {},
S \ h = {(x1), (x2), (¬x2)}

Unsat, Core: (¬x1 ∨ ¬x2), (x1), (x2)

New set to hit: k1 = {s1, s2}

h = {s1}, S \ h = {(x2), (¬x2)}

Unsat, Core: (x2), (¬x2)

New set to hit: k2 = {s2, s3}

h = {s2}, S \ h = {(x1), (¬x2)}

Sat



Example Basic MaxHS-like Algorithm

H = {(¬x1 ∨ ¬x2)} S = {s1 : (x1), s2 : (x2), s3 : (¬x2)}

MHS SATh = {},
S \ h = {(x1), (x2), (¬x2)}

Unsat, Core: (¬x1 ∨ ¬x2), (x1), (x2)

New set to hit: k1 = {s1, s2}

h = {s1}, S \ h = {(x2), (¬x2)}

Unsat, Core: (x2), (¬x2)

New set to hit: k2 = {s2, s3}

h = {s2}, S \ h = {(x1), (¬x2)}

Sat



Example Basic MaxHS-like Algorithm

H = {(¬x1 ∨ ¬x2)} S = {s1 : (x1), s2 : (x2), s3 : (¬x2)}

MHS SATh = {},
S \ h = {(x1), (x2), (¬x2)}

Unsat, Core: (¬x1 ∨ ¬x2), (x1), (x2)

New set to hit: k1 = {s1, s2}

h = {s1}, S \ h = {(x2), (¬x2)}

Unsat, Core: (x2), (¬x2)

New set to hit: k2 = {s2, s3}

h = {s2}, S \ h = {(x1), (¬x2)}

Sat



Example Basic MaxHS-like Algorithm

H = {(¬x1 ∨ ¬x2)} S = {s1 : (x1), s2 : (x2), s3 : (¬x2)}

MHS SATh = {},
S \ h = {(x1), (x2), (¬x2)}

Unsat, Core: (¬x1 ∨ ¬x2), (x1), (x2)

New set to hit: k1 = {s1, s2}

h = {s1}, S \ h = {(x2), (¬x2)}

Unsat, Core: (x2), (¬x2)

New set to hit: k2 = {s2, s3}

h = {s2}, S \ h = {(x1), (¬x2)}

Sat



Example Basic MaxHS-like Algorithm

H = {(¬x1 ∨ ¬x2)} S = {s1 : (x1), s2 : (x2), s3 : (¬x2)}

MHS SATh = {},
S \ h = {(x1), (x2), (¬x2)}

Unsat, Core: (¬x1 ∨ ¬x2), (x1), (x2)

New set to hit: k1 = {s1, s2}

h = {s1}, S \ h = {(x2), (¬x2)}

Unsat, Core: (x2), (¬x2)

New set to hit: k2 = {s2, s3}

h = {s2}, S \ h = {(x1), (¬x2)}

Sat



Outline

Basic MaxHS Algorithm

DRMaxSAT

DRMaxSAT/basic MaxHS vs Pigeonhole Principle

DRMaxSAT/basic MaxHS vs Doubled Pigeonhole Principle

Conclusions



DRMaxSAT: DRE

Dual-Rail Encoding (DRE) [DAC87, AI99]

Input: F CNF formula with N variables X = {x1, . . . , xN}

Output: MaxSAT problem < H,S >:
• for each xi ∈ X :

– associate new variables pi and ni

xi = 1 iff pi = 1, and xi = 0 iff ni = 1

– add to S the clauses (pi ) and (ni )
– add to H the clause (¬pi ∨ ¬ni ) (P clauses)

• for each clause c ∈ F add to H the clause c ′:

– if xi ∈ c then ¬ni ∈ c ′

– if ¬xi ∈ c then ¬pi ∈ c ′



DRMaxSAT: DRE

Dual-Rail Encoding (DRE) [DAC87, AI99]

Input: F CNF formula with N variables X = {x1, . . . , xN}

Output: MaxSAT problem < H,S >:

• for each xi ∈ X :

– associate new variables pi and ni

xi = 1 iff pi = 1, and xi = 0 iff ni = 1

– add to S the clauses (pi ) and (ni )
– add to H the clause (¬pi ∨ ¬ni ) (P clauses)

• for each clause c ∈ F add to H the clause c ′:

– if xi ∈ c then ¬ni ∈ c ′

– if ¬xi ∈ c then ¬pi ∈ c ′



DRMaxSAT: DRE

Dual-Rail Encoding (DRE) [DAC87, AI99]

Input: F CNF formula with N variables X = {x1, . . . , xN}

Output: MaxSAT problem < H,S >:
• for each xi ∈ X :

– associate new variables pi and ni

xi = 1 iff pi = 1, and xi = 0 iff ni = 1

– add to S the clauses (pi ) and (ni )
– add to H the clause (¬pi ∨ ¬ni ) (P clauses)

• for each clause c ∈ F add to H the clause c ′:

– if xi ∈ c then ¬ni ∈ c ′

– if ¬xi ∈ c then ¬pi ∈ c ′



DRMaxSAT: DRE

Dual-Rail Encoding (DRE) [DAC87, AI99]

Input: F CNF formula with N variables X = {x1, . . . , xN}

Output: MaxSAT problem < H,S >:
• for each xi ∈ X :

– associate new variables pi and ni

xi = 1 iff pi = 1, and xi = 0 iff ni = 1

– add to S the clauses (pi ) and (ni )
– add to H the clause (¬pi ∨ ¬ni ) (P clauses)

• for each clause c ∈ F add to H the clause c ′:

– if xi ∈ c then ¬ni ∈ c ′

– if ¬xi ∈ c then ¬pi ∈ c ′



DRMaxSAT: DRE Example

F = {(¬x1 ∨ ¬x2), (x1), (x2), (¬x2)}

• MaxSAT problem < H,S >
• for x1:

– create p1 and n1

– add (p1), (n1) to S
– add (¬p1 ∨ ¬n1) to H

• for x2:

– create p2 and n2

– add (p2), (n2) to S
– add (¬p2 ∨ ¬n2) to H



DRMaxSAT: DRE Example

F = {(¬x1 ∨ ¬x2), (x1), (x2), (¬x2)}

• MaxSAT problem < H,S >

• for x1:

– create p1 and n1

– add (p1), (n1) to S
– add (¬p1 ∨ ¬n1) to H

• for x2:

– create p2 and n2

– add (p2), (n2) to S
– add (¬p2 ∨ ¬n2) to H



DRMaxSAT: DRE Example

F = {(¬x1 ∨ ¬x2), (x1), (x2), (¬x2)}

• MaxSAT problem < H,S >
• for x1:

– create p1 and n1

– add (p1), (n1) to S
– add (¬p1 ∨ ¬n1) to H

• for x2:

– create p2 and n2

– add (p2), (n2) to S
– add (¬p2 ∨ ¬n2) to H



DRMaxSAT: DRE Example

F = {(¬x1 ∨ ¬x2), (x1), (x2), (¬x2)}

• MaxSAT problem < H,S >

• for (¬x1 ∨ ¬x2):

– add (¬p1 ∨ ¬p2) to H

• for (x1), (x2), (¬x2):

– add (¬n1), (¬n2), (¬p2) to H



DRMaxSAT: DRE Example

F = {(¬x1 ∨ ¬x2), (x1), (x2), (¬x2)}

MaxSAT problem < H,S >

:

S ={(p1), (n1), (p2), (n1)}

H ={(¬p1 ∨ ¬n1), (¬p2 ∨ ¬n2),
(¬p1 ∨ ¬p2),
(¬n1), (¬n2), (¬p2)}

MaxSAT Cost: 3



DRMaxSAT: DRE Example

F = {(¬x1 ∨ ¬x2), (x1), (x2), (¬x2)}

MaxSAT problem < H,S > :

S ={(p1), (n1), (p2), (n1)}

H ={(¬p1 ∨ ¬n1), (¬p2 ∨ ¬n2),
(¬p1 ∨ ¬p2),
(¬n1), (¬n2), (¬p2)}

MaxSAT Cost: 3



DRMaxSAT: DRE Example

F = {(¬x1 ∨ ¬x2), (x1), (x2), (¬x2)}

MaxSAT problem < H,S > :

S ={(p1), (n1), (p2), (n1)}

H ={(¬p1 ∨ ¬n1), (¬p2 ∨ ¬n2),
(¬p1 ∨ ¬p2),
(¬n1), (¬n2), (¬p2)}

MaxSAT Cost: 3



DRMaxSAT

Theorem
F is satisfiable iff there is a truth assignment satisfying H that satisfies
at least N clauses in S. [SAT17]

Example: N = 2 and MaxSAT cost 3, thus F is unsatisfiable.



DRMaxSAT

Theorem
F is satisfiable iff there is a truth assignment satisfying H that satisfies
at least N clauses in S. [SAT17]

Example: N = 2 and MaxSAT cost 3, thus F is unsatisfiable.



Outline

Basic MaxHS Algorithm

DRMaxSAT

DRMaxSAT/basic MaxHS vs Pigeonhole Principle

DRMaxSAT/basic MaxHS vs Doubled Pigeonhole Principle

Conclusions



Pigeonhole Principle

Pigeonhole Principle: If m + 1 pigeons are distributed by m holes, then
at least one hole contains more than one pigeon.

Propositonal encoding of PHPm+1
m

• Variables: xij , i ∈ [m + 1], j ∈ [m]

xij = 1 iff pigeon i is place in hole j

N = (m + 1)m

• Contraints:
m+1∧
i=1

(xi1 ∨ . . . ∨ xim)

m∧
j=1

m∧
i1=1

m+1∧
i2=1

(¬xi1j ∨ ¬xi2j)



Pigeonhole Principle

Pigeonhole Principle: If m + 1 pigeons are distributed by m holes, then
at least one hole contains more than one pigeon.

Propositonal encoding of PHPm+1
m

• Variables: xij , i ∈ [m + 1], j ∈ [m]

xij = 1 iff pigeon i is place in hole j

N = (m + 1)m

• Contraints:
m+1∧
i=1

(xi1 ∨ . . . ∨ xim)

m∧
j=1

m∧
i1=1

m+1∧
i2=1

(¬xi1j ∨ ¬xi2j)



Pigeonhole Principle

Pigeonhole Principle: If m + 1 pigeons are distributed by m holes, then
at least one hole contains more than one pigeon.

Propositonal encoding of PHPm+1
m

• Variables: xij , i ∈ [m + 1], j ∈ [m]

xij = 1 iff pigeon i is place in hole j

N = (m + 1)m

• Contraints:
m+1∧
i=1

(xi1 ∨ . . . ∨ xim)

m∧
j=1

m∧
i1=1

m+1∧
i2=1

(¬xi1j ∨ ¬xi2j)



DRE of Pigeonhole Principle

DRE(PHPm+1
m ):

• for each xij , i ∈ [m + 1], j ∈ [m]:

– associate variables pij and nij
– add soft clauses (pij), (nij)
– add hard P-clause (¬pij ∨ ¬nij)

• for each i ∈ [m + 1]:

Li = (¬ni1 ∨ . . . ∨ ¬nim)

• for each j ∈ [m]:

Mj =
m∧

i1=1

m+1∧
i2=1

(¬pi1j ∨ ¬pi2j)

PHPm+1
m unsatisfiable if cost ≥ N + 1 = (m + 1)m + 1



DRE of Pigeonhole Principle

DRE(PHPm+1
m ):

• for each xij , i ∈ [m + 1], j ∈ [m]:

– associate variables pij and nij
– add soft clauses (pij), (nij)
– add hard P-clause (¬pij ∨ ¬nij)

• for each i ∈ [m + 1]:

Li = (¬ni1 ∨ . . . ∨ ¬nim)

• for each j ∈ [m]:

Mj =
m∧

i1=1

m+1∧
i2=1

(¬pi1j ∨ ¬pi2j)

PHPm+1
m unsatisfiable if cost ≥ N + 1 = (m + 1)m + 1



DRE of Pigeonhole Principle

DRE(PHPm+1
m ):

• for each xij , i ∈ [m + 1], j ∈ [m]:

– associate variables pij and nij
– add soft clauses (pij), (nij)
– add hard P-clause (¬pij ∨ ¬nij)

• for each i ∈ [m + 1]:

Li = (¬ni1 ∨ . . . ∨ ¬nim)

• for each j ∈ [m]:

Mj =
m∧

i1=1

m+1∧
i2=1

(¬pi1j ∨ ¬pi2j)

PHPm+1
m unsatisfiable if cost ≥ N + 1 = (m + 1)m + 1



DRE of Pigeonhole Principle

DRE(PHPm+1
m ):

• for each xij , i ∈ [m + 1], j ∈ [m]:

– associate variables pij and nij
– add soft clauses (pij), (nij)
– add hard P-clause (¬pij ∨ ¬nij)

• for each i ∈ [m + 1]:

Li = (¬ni1 ∨ . . . ∨ ¬nim)

• for each j ∈ [m]:

Mj =
m∧

i1=1

m+1∧
i2=1

(¬pi1j ∨ ¬pi2j)

PHPm+1
m unsatisfiable if cost ≥ N + 1 = (m + 1)m + 1



Computing MaxSAT cost of DRE(PHPm+1
m )

Proposition

Given < Li ,S > there is an execution of the basic MaxHS algorithm
that computes a MaxSAT cost of 1 in polynomial time.

Proof Idea:

• Core obtained by unit propagation

• Only one set to hit

• cost is 1



Computing MaxSAT cost of DRE(PHPm+1
m )

Proposition

Given < Li ,S > there is an execution of the basic MaxHS algorithm
that computes a MaxSAT cost of 1 in polynomial time.

Proof Idea:

• Core obtained by unit propagation

• Only one set to hit

• cost is 1



Computing MaxSAT cost of DRE(PHPm+1
m )

Proposition

Given <Mj ,S > there is an execution of the basic MaxHS algorithm
that computes a MaxSAT cost of m in polynomial time.

Proof Idea:

• Order the clauses in the SAT solver (via an ordering of the
variables)

• Cores induce sets to hit in MHS that correspond to a known graph
(a clique or a clique plus one extra vertex)

• Last iteration corresponds to a clique of size m + 1, with minimum
hitting set of size m (cost)



Computing MaxSAT cost of DRE(PHPm+1
m )

Proposition

Given <Mj ,S > there is an execution of the basic MaxHS algorithm
that computes a MaxSAT cost of m in polynomial time.

Proof Idea:

• Order the clauses in the SAT solver (via an ordering of the
variables)

• Cores induce sets to hit in MHS that correspond to a known graph
(a clique or a clique plus one extra vertex)

• Last iteration corresponds to a clique of size m + 1, with minimum
hitting set of size m (cost)



Computing MaxSAT cost of DRE(PHPm+1
m )

Proposition

Given <Mj ,S > there is an execution of the basic MaxHS algorithm
that computes a MaxSAT cost of m in polynomial time.

Proof Idea:

• Order the clauses in the SAT solver (via an ordering of the
variables)

• Cores induce sets to hit in MHS that correspond to a known graph
(a clique or a clique plus one extra vertex)

• Last iteration corresponds to a clique of size m + 1, with minimum
hitting set of size m (cost)



Computing MaxSAT cost of DRE(PHPm+1
m )

Proposition

Given <Mj ,S > there is an execution of the basic MaxHS algorithm
that computes a MaxSAT cost of m in polynomial time.

Proof Idea:

• Order the clauses in the SAT solver (via an ordering of the
variables)

• Cores induce sets to hit in MHS that correspond to a known graph
(a clique or a clique plus one extra vertex)

• Last iteration corresponds to a clique of size m + 1, with minimum
hitting set of size m (cost)



Outline

Basic MaxHS Algorithm

DRMaxSAT

DRMaxSAT/basic MaxHS vs Pigeonhole Principle

DRMaxSAT/basic MaxHS vs Doubled Pigeonhole Principle

Conclusions



Doubled Pigeonhole Principle

Doubled Pigeonhole Principle: If 2m + 1 pigeons are distributed by m
holes, then at least one hole contains more than two pigeons.

Propositonal encoding of 2PHP2m+1
m

• Variables: xij , i ∈ [2m + 1], j ∈ [m]

xij = 1 iff pigeon i is place in hole j

N = (2m + 1)m

• Contraints:
2m+1∧
i=1

(xi1 ∨ . . . ∨ xim)

m∧
j=1

2m−1∧
i1=1

2m∧
i2=1

2m+1∧
i3=3

(¬xi1j ∨ ¬xi2j ∨ ¬xi3j)



Doubled Pigeonhole Principle

Doubled Pigeonhole Principle: If 2m + 1 pigeons are distributed by m
holes, then at least one hole contains more than two pigeons.

Propositonal encoding of 2PHP2m+1
m

• Variables: xij , i ∈ [2m + 1], j ∈ [m]

xij = 1 iff pigeon i is place in hole j

N = (2m + 1)m

• Contraints:
2m+1∧
i=1

(xi1 ∨ . . . ∨ xim)

m∧
j=1

2m−1∧
i1=1

2m∧
i2=1

2m+1∧
i3=3

(¬xi1j ∨ ¬xi2j ∨ ¬xi3j)



Doubled Pigeonhole Principle

Doubled Pigeonhole Principle: If 2m + 1 pigeons are distributed by m
holes, then at least one hole contains more than two pigeons.

Propositonal encoding of 2PHP2m+1
m

• Variables: xij , i ∈ [2m + 1], j ∈ [m]

xij = 1 iff pigeon i is place in hole j

N = (2m + 1)m

• Contraints:
2m+1∧
i=1

(xi1 ∨ . . . ∨ xim)

m∧
j=1

2m−1∧
i1=1

2m∧
i2=1

2m+1∧
i3=3

(¬xi1j ∨ ¬xi2j ∨ ¬xi3j)



DRE of Doubled Pigeonhole Principle

DRE(2PHP2m+1
m ):

• for each xij , i ∈ [2m + 1], j ∈ [m]:

– associate variables pij and nij
– add soft clauses (pij), (nij)
– add hard P-clause (¬pij ∨ ¬nij)

• for each i ∈ [2m + 1]:

Li = (¬ni1 ∨ . . . ∨ ¬nim)

• for each j ∈ [m]:

Mj =
2m−1∧
i1=1

2m∧
i2=1

2m+1∧
i3=3

(¬pi1j ∨ ¬pi2j ∨ ¬pi2j)

2PHPm+1
m unsatisfiable if cost ≥ N + 1 = (2m + 1)m + 1



DRE of Doubled Pigeonhole Principle

DRE(2PHP2m+1
m ):

• for each xij , i ∈ [2m + 1], j ∈ [m]:

– associate variables pij and nij
– add soft clauses (pij), (nij)
– add hard P-clause (¬pij ∨ ¬nij)

• for each i ∈ [2m + 1]:

Li = (¬ni1 ∨ . . . ∨ ¬nim)

• for each j ∈ [m]:

Mj =
2m−1∧
i1=1

2m∧
i2=1

2m+1∧
i3=3

(¬pi1j ∨ ¬pi2j ∨ ¬pi2j)

2PHPm+1
m unsatisfiable if cost ≥ N + 1 = (2m + 1)m + 1



DRE of Doubled Pigeonhole Principle

DRE(2PHP2m+1
m ):

• for each xij , i ∈ [2m + 1], j ∈ [m]:

– associate variables pij and nij
– add soft clauses (pij), (nij)
– add hard P-clause (¬pij ∨ ¬nij)

• for each i ∈ [2m + 1]:

Li = (¬ni1 ∨ . . . ∨ ¬nim)

• for each j ∈ [m]:

Mj =
2m−1∧
i1=1

2m∧
i2=1

2m+1∧
i3=3

(¬pi1j ∨ ¬pi2j ∨ ¬pi2j)

2PHPm+1
m unsatisfiable if cost ≥ N + 1 = (2m + 1)m + 1



DRE of Doubled Pigeonhole Principle

DRE(2PHP2m+1
m ):

• for each xij , i ∈ [2m + 1], j ∈ [m]:

– associate variables pij and nij
– add soft clauses (pij), (nij)
– add hard P-clause (¬pij ∨ ¬nij)

• for each i ∈ [2m + 1]:

Li = (¬ni1 ∨ . . . ∨ ¬nim)

• for each j ∈ [m]:

Mj =
2m−1∧
i1=1

2m∧
i2=1

2m+1∧
i3=3

(¬pi1j ∨ ¬pi2j ∨ ¬pi2j)

2PHPm+1
m unsatisfiable if cost ≥ N + 1 = (2m + 1)m + 1



Computing MaxSAT cost of DRE(2PHP2m+1
m )

Proposition

Given <Mj ,S > there is an execution of the basic MaxHS algorithm
that computes a MaxSAT cost of 2m − 1 in polynomial time.

Proof Idea:

• Order the clauses in the SAT solver (via an ordering of the
variables)

• Cores induce sets to hit in MHS that correspond to a known
structure (a set of all triplets, or a set of all triplets plus some
triplets containing and additional element)

• Last iteration corresponds to a minimum hitting set of size 2m − 1
(cost)



Computing MaxSAT cost of DRE(2PHP2m+1
m )

Proposition

Given <Mj ,S > there is an execution of the basic MaxHS algorithm
that computes a MaxSAT cost of 2m − 1 in polynomial time.

Proof Idea:

• Order the clauses in the SAT solver (via an ordering of the
variables)

• Cores induce sets to hit in MHS that correspond to a known
structure (a set of all triplets, or a set of all triplets plus some
triplets containing and additional element)

• Last iteration corresponds to a minimum hitting set of size 2m − 1
(cost)



Outline

Basic MaxHS Algorithm

DRMaxSAT

DRMaxSAT/basic MaxHS vs Pigeonhole Principle

DRMaxSAT/basic MaxHS vs Doubled Pigeonhole Principle

Conclusions



Conclusions

• MaxHS-like MaxSAT algorithms show good performance on
dual-rail encoded families of benchmarks
• Showed that DRMaxSAT using Basic MaxHS Algorithm can refute

in polynomial time:

– Pigeonhole Principle
– Doubled Pigeonhole Principle

• Future work will seek to :

– understand how MaxHS-like algorithms compare with core-guided
algortihms

– search for other principles (hard for resolution) for which
DRMaxSAT may be beneficial


	Basic MaxHS Algorithm
	DRMaxSAT
	DRMaxSAT/basic MaxHS vs Pigeonhole Principle
	DRMaxSAT/basic MaxHS vs Doubled Pigeonhole Principle
	Conclusions

