DRMaxSAT with MaxHS: First Contact

$\begin{array}{ccc} \textbf{A.Morgado}^1 & \text{A.Ignatiev}^{1,4} & \text{M.L.Bonet}^2 & \text{J.Marques-Silva}^1 \\ & \text{S.Buss}^3 \end{array}$

¹ Faculty of Science, University of Lisbon, Portugal

² Computer Science, Universidad Politécnica de Cataluna, Barcelona, Spain

³ Department of Mathematics, University of California, San Diego, USA

⁴ ISDCT SB RAS, Irkutsk, Russia

SAT 2019

Motivation

• Success of Conflict-Driven Clause Learning (CDCL) demonstrates the reach of the Resolution proof system

Motivation

- Success of Conflict-Driven Clause Learning (CDCL) demonstrates the reach of the Resolution proof system
- From proof complexity point of view, Resolution is regarded as a rather weak proof system

Motivation

- Success of Conflict-Driven Clause Learning (CDCL) demonstrates the reach of the Resolution proof system
- From proof complexity point of view, Resolution is regarded as a rather weak proof system
- Recent efforts for developing efficient implementations of stronger proof systems:
 - Extended Resolution (ExtRes)
 - DRAT
 - Cutting Planes (CP)
 - Dual-Rail Maximum Satisfiability (DRMaxSAT)

- Translates a CNF formula ${\mathcal F}$ using the Dual-Rail Encoding
- Uses a MaxSAT algorithm to obtain the cost of the encoded formula
- \bullet Determines the satisfiability of ${\mathcal F}$ based on the cost of the encoded formula

Weighted DRMaxSAT simulates general resolution.

Weighted DRMaxSAT simulates general resolution.

DRMaxSAT refutes in polynomial time:

- Pigeonhole Principle (PHP)
- Doubled Pigeonhole principle (2PHP)

Weighted DRMaxSAT simulates general resolution.

DRMaxSAT refutes in polynomial time:

- Pigeonhole Principle (PHP)
- Doubled Pigeonhole principle (2PHP)

MaxSAT algorithms based on:

•	MaxSAT Resolution	[AAAI18]

[SAT17]

Core-Guided MaxSAT Algorithms

Weighted DRMaxSAT simulates general resolution.

DRMaxSAT refutes in polynomial time:

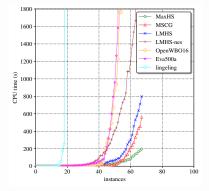
- Pigeonhole Principle (PHP)
- Doubled Pigeonhole principle (2PHP)

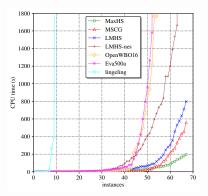
MaxSAT algorithms based on:

•	MaxSAT Resolution	[AAAI18]
•	MaxSAT Resolution	[AAAI18]

Core-Guided MaxSAT Algorithms
[SAT17]

Hitting Set-based MaxSAT Approach: MaxHS-like Algorithm [SAT19]





2PHP

Outline

Basic MaxHS Algorithm

DRMaxSAT

DRMaxSAT/basic MaxHS vs Pigeonhole Principle

DRMaxSAT/basic MaxHS vs Doubled Pigeonhole Principle

Conclusions

Outline

Basic MaxHS Algorithm

DRMaxSAT

DRMaxSAT/basic MaxHS vs Pigeonhole Principle

DRMaxSAT/basic MaxHS vs Doubled Pigeonhole Principle

Conclusions

- \mathcal{F} CNF formula: conjunction of clauses
- Clause: disjunction of literals
- Literal: variable x or its completement $\neg x$
- $\mathcal A$ Assignment: mapping from variables to $\{0,1\}$

• SAT problem: Given \mathcal{F} determine if there is an assignment \mathcal{A} for \mathcal{F} that satisfies all its clauses, otherwise \mathcal{F} is unsatisfiable.

MaxSAT

- Partial MaxSAT problem < H, S >:
 - $\,\mathcal{H}$ set of hard clauses
 - $\,\mathcal{S}$ set of soft clauses

Goal: Find an assignment ${\cal A}$ that satisfies all clauses in ${\cal H}$ and maximizes the number of satisfied clauses in ${\cal S}$

$\mathsf{Max}\mathsf{SAT}$

- Partial MaxSAT problem < H, S >:
 - $\,\mathcal{H}$ set of hard clauses
 - $\,\mathcal{S}$ set of soft clauses

Goal: Find an assignment ${\cal A}$ that satisfies all clauses in ${\cal H}$ and maximizes the number of satisfied clauses in ${\cal S}$

• Cost of an assignment: number of unsatisfied clauses in ${\mathcal S}$

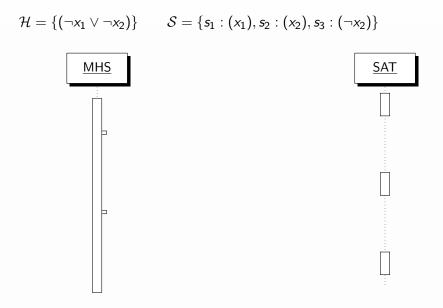
Basic MaxHS-like Algorithm

- MaxHS is a relatively recent MaxSAT approach:
 - $-\,$ based on the hitting set duality between MCSes and MUSes
 - results in simpler oracle calls, but at the cost of possibly exponentially larger number of calls

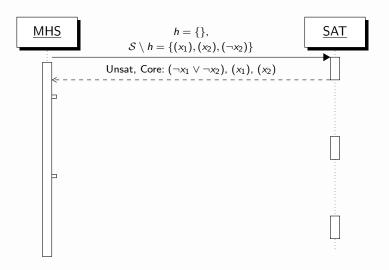
Basic MaxHS-like Algorithm

• MaxHS is a relatively recent MaxSAT approach:

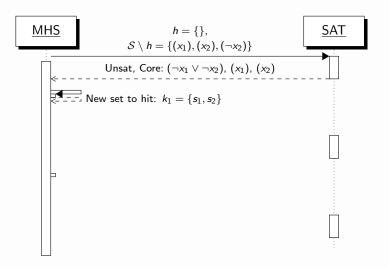
- based on the hitting set duality between MCSes and MUSes
- results in simpler oracle calls, but at the cost of possibly exponentially larger number of calls



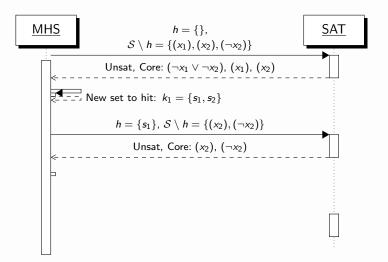
 $\mathcal{H} = \{ (\neg x_1 \lor \neg x_2) \} \qquad \mathcal{S} = \{ s_1 : (x_1), s_2 : (x_2), s_3 : (\neg x_2) \}$



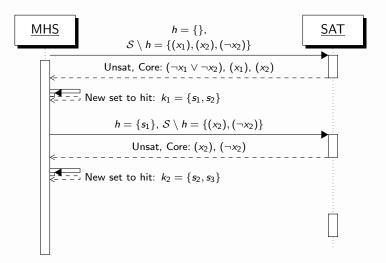
$$\mathcal{H} = \{ (\neg x_1 \lor \neg x_2) \} \qquad \mathcal{S} = \{ s_1 : (x_1), s_2 : (x_2), s_3 : (\neg x_2) \}$$



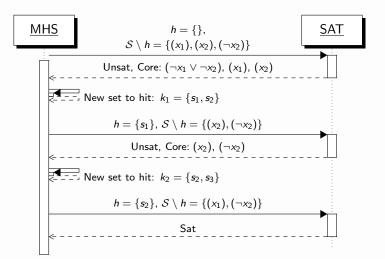
$$\mathcal{H} = \{ (\neg x_1 \lor \neg x_2) \} \qquad \mathcal{S} = \{ s_1 : (x_1), s_2 : (x_2), s_3 : (\neg x_2) \}$$



$$\mathcal{H} = \{ (\neg x_1 \lor \neg x_2) \} \qquad \mathcal{S} = \{ s_1 : (x_1), s_2 : (x_2), s_3 : (\neg x_2) \}$$



$$\mathcal{H} = \{ (\neg x_1 \lor \neg x_2) \} \qquad \mathcal{S} = \{ s_1 : (x_1), s_2 : (x_2), s_3 : (\neg x_2) \}$$



Outline

Basic MaxHS Algorithm

DRMaxSAT

DRMaxSAT/basic MaxHS vs Pigeonhole Principle

DRMaxSAT/basic MaxHS vs Doubled Pigeonhole Principle

Conclusions

Dual-Rail Encoding (DRE)

[DAC87, AI99]

Input: \mathcal{F} CNF formula with N variables $X = \{x_1, \ldots, x_N\}$

Dual-Rail Encoding (DRE)

[DAC87, AI99]

Input: \mathcal{F} CNF formula with N variables $X = \{x_1, \ldots, x_N\}$

Output: MaxSAT problem < H, S >:

Dual-Rail Encoding (DRE)

[DAC87, AI99]

Input: \mathcal{F} CNF formula with N variables $X = \{x_1, \ldots, x_N\}$

Output: MaxSAT problem < H, S >:

- for each $x_i \in X$:
 - associate new variables p_i and n_i

$$x_i = 1$$
 iff $p_i = 1$, and $x_i = 0$ iff $n_i = 1$

- add to
$$S$$
 the clauses (p_i) and (n_i)

- add to \mathcal{H} the clause $(\neg p_i \lor \neg n_i)$ (\mathcal{P} clauses)

Dual-Rail Encoding (DRE)

[DAC87, AI99]

Input: \mathcal{F} CNF formula with N variables $X = \{x_1, \ldots, x_N\}$

Output: MaxSAT problem < H, S >:

- for each $x_i \in X$:
 - associate new variables p_i and n_i

$$x_i = 1$$
 iff $p_i = 1$, and $x_i = 0$ iff $n_i = 1$

– add to
$$\mathcal S$$
 the clauses (p_i) and (n_i)

- add to \mathcal{H} the clause $(\neg p_i \lor \neg n_i)$ (\mathcal{P} clauses)
- for each clause $c \in \mathcal{F}$ add to \mathcal{H} the clause c':

$$- \text{ if } x_i \in c \text{ then } \neg n_i \in c'$$

- if $\neg x_i \in c$ then $\neg p_i \in c'$

$$\mathcal{F} = \{ (\neg x_1 \lor \neg x_2), (x_1), (x_2), (\neg x_2) \}$$

$$\mathcal{F} = \{ (\neg x_1 \lor \neg x_2), (x_1), (x_2), (\neg x_2) \}$$

• MaxSAT problem < H, S >

$$\mathcal{F} = \{ (\neg x_1 \lor \neg x_2), (x_1), (x_2), (\neg x_2) \}$$

- MaxSAT problem < H, S >
- for *x*₁:
 - create p_1 and n_1
 - add (p_1) , (n_1) to S
 - add $(\neg p_1 \lor \neg n_1)$ to $\mathcal H$
- for *x*₂:
 - create p_2 and n_2
 - add (p_2), (n_2) to ${\cal S}$
 - add $(\neg p_2 \lor \neg n_2)$ to \mathcal{H}

$$\mathcal{F} = \{ (\neg x_1 \lor \neg x_2), (x_1), (x_2), (\neg x_2) \}$$

• MaxSAT problem $< \mathcal{H}, \mathcal{S} >$

• for
$$(\neg x_1 \lor \neg x_2)$$
:
- add $(\neg p_1 \lor \neg p_2)$ to \mathcal{H}

• for
$$(x_1)$$
, (x_2) , $(\neg x_2)$:
- add $(\neg n_1)$, $(\neg n_2)$, $(\neg p_2)$ to \mathcal{H}

$$\mathcal{F} = \{ (\neg x_1 \lor \neg x_2), (x_1), (x_2), (\neg x_2) \}$$

 $\mathsf{MaxSAT} \text{ problem} < \mathcal{H}, \mathcal{S} >$

$$\mathcal{F} = \{ (\neg x_1 \lor \neg x_2), (x_1), (x_2), (\neg x_2) \}$$

 $\mathsf{MaxSAT} \text{ problem} < \mathcal{H}, \mathcal{S} > :$

$$S = \{(p_1), (n_1), (p_2), (n_1)\}$$
$$\mathcal{H} = \{(\neg p_1 \lor \neg n_1), (\neg p_2 \lor \neg n_2), (\neg p_1 \lor \neg p_2), (\neg n_1), (\neg n_2), (\neg p_2)\}$$

$$\mathcal{F} = \{ (\neg x_1 \lor \neg x_2), (x_1), (x_2), (\neg x_2) \}$$

 $\mathsf{MaxSAT} \text{ problem } < \mathcal{H}, \mathcal{S} > :$

$$S = \{(p_1), (n_1), (p_2), (n_1)\}$$
$$\mathcal{H} = \{(\neg p_1 \lor \neg n_1), (\neg p_2 \lor \neg n_2), (\neg p_1 \lor \neg p_2), (\neg n_1), (\neg n_2), (\neg p_2)\}$$

MaxSAT Cost: 3

DRMaxSAT

Theorem

 \mathcal{F} is satisfiable iff there is a truth assignment satisfying \mathcal{H} that satisfies at least N clauses in S. [SAT17]

DRMaxSAT

Theorem

 \mathcal{F} is satisfiable iff there is a truth assignment satisfying \mathcal{H} that satisfies at least N clauses in S. [SAT17]

Example: N = 2 and MaxSAT cost 3, thus \mathcal{F} is unsatisfiable.

Outline

Basic MaxHS Algorithm

DRMaxSAT

DRMaxSAT/basic MaxHS vs Pigeonhole Principle

DRMaxSAT/basic MaxHS vs Doubled Pigeonhole Principle

Conclusions

Pigeonhole Principle

Pigeonhole Principle: If m + 1 pigeons are distributed by m holes, then at least one hole contains more than one pigeon.

Pigeonhole Principle

Pigeonhole Principle: If m + 1 pigeons are distributed by m holes, then at least one hole contains more than one pigeon.

Propositonal encoding of PHP_m^{m+1}

• Variables: x_{ij} , $i \in [m+1]$, $j \in [m]$

 $x_{ij} = 1$ iff pigeon *i* is place in hole *j*

N=(m+1)m

Pigeonhole Principle

Pigeonhole Principle: If m + 1 pigeons are distributed by m holes, then at least one hole contains more than one pigeon.

Propositonal encoding of PHP_m^{m+1}

• Variables: x_{ij} , $i \in [m+1]$, $j \in [m]$

 $x_{ij} = 1$ iff pigeon *i* is place in hole *j*

N=(m+1)m

• Contraints:

$$igwedge_{i=1}^{m+1} (x_{i1} ee \ldots ee x_{im}) \ igwedge_{j=1}^m \ igwedge_{i_1=1}^m igwedge_{i_2=1}^{m+1} (\neg x_{i_1j} ee \neg x_{i_2j})$$

 $DRE(PHP_m^{m+1})$:

- for each x_{ij} , $i \in [m+1]$, $j \in [m]$:
 - associate variables p_{ij} and n_{ij}
 - add soft clauses (p_{ij}) , (n_{ij})
 - add hard \mathcal{P} -clause $(\neg p_{ij} \lor \neg n_{ij})$

 $DRE(PHP_m^{m+1})$:

- for each x_{ij} , $i \in [m+1]$, $j \in [m]$:
 - associate variables p_{ij} and n_{ij}
 - add soft clauses (p_{ij}) , (n_{ij})
 - add hard \mathcal{P} -clause $(\neg p_{ij} \lor \neg n_{ij})$
- for each $i \in [m+1]$:

$$\mathcal{L}_i = (\neg n_{i1} \lor \ldots \lor \neg n_{im})$$

 $DRE(PHP_m^{m+1})$:

- for each x_{ij} , $i \in [m+1]$, $j \in [m]$:
 - associate variables p_{ij} and n_{ij}
 - add soft clauses (p_{ij}) , (n_{ij})
 - add hard \mathcal{P} -clause $(\neg p_{ij} \lor \neg n_{ij})$
- for each $i \in [m+1]$:

$$\mathcal{L}_i = (\neg n_{i1} \lor \ldots \lor \neg n_{im})$$

• for each $j \in [m]$:

$$\mathcal{M}_j = \bigwedge_{i_1=1}^m \bigwedge_{i_2=1}^{m+1} (\neg p_{i_1j} \lor \neg p_{i_2j})$$

 $DRE(PHP_m^{m+1})$:

- for each x_{ij} , $i \in [m+1]$, $j \in [m]$:
 - associate variables p_{ij} and n_{ij}
 - add soft clauses (p_{ij}) , (n_{ij})
 - add hard \mathcal{P} -clause $(\neg p_{ij} \lor \neg n_{ij})$
- for each $i \in [m+1]$:

$$\mathcal{L}_i = (\neg n_{i1} \lor \ldots \lor \neg n_{im})$$

• for each $j \in [m]$:

$$\mathcal{M}_j = \bigwedge_{i_1=1}^m \bigwedge_{i_2=1}^{m+1} (\neg p_{i_1j} \lor \neg p_{i_2j})$$

 PHP_m^{m+1} unsatisfiable if cost $\geq N+1 = (m+1)m+1$

Proposition

Given $< L_i, S >$ there is an execution of the basic MaxHS algorithm that computes a MaxSAT cost of 1 in polynomial time.

Proposition

Given $< L_i, S >$ there is an execution of the basic MaxHS algorithm that computes a MaxSAT cost of 1 in polynomial time.

Proof Idea:

- Core obtained by unit propagation
- Only one set to hit
- cost is 1

Proposition

Given $< M_j, S >$ there is an execution of the basic MaxHS algorithm that computes a MaxSAT cost of *m* in polynomial time.

Proposition

Given $< M_j, S >$ there is an execution of the basic MaxHS algorithm that computes a MaxSAT cost of *m* in polynomial time.

Proof Idea:

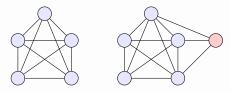
• Order the clauses in the SAT solver (via an ordering of the variables)

Proposition

Given $< M_j, S >$ there is an execution of the basic MaxHS algorithm that computes a MaxSAT cost of *m* in polynomial time.

Proof Idea:

- Order the clauses in the SAT solver (via an ordering of the variables)
- Cores induce sets to hit in MHS that correspond to a known graph (a clique or a clique plus one extra vertex)

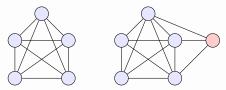


Proposition

Given $< M_j, S >$ there is an execution of the basic MaxHS algorithm that computes a MaxSAT cost of *m* in polynomial time.

Proof Idea:

- Order the clauses in the SAT solver (via an ordering of the variables)
- Cores induce sets to hit in MHS that correspond to a known graph (a clique or a clique plus one extra vertex)



• Last iteration corresponds to a clique of size m + 1, with minimum hitting set of size m (cost)

Outline

Basic MaxHS Algorithm

DRMaxSAT

DRMaxSAT/basic MaxHS vs Pigeonhole Principle

DRMaxSAT/basic MaxHS vs Doubled Pigeonhole Principle

Conclusions

Doubled Pigeonhole Principle

Doubled Pigeonhole Principle: If 2m + 1 pigeons are distributed by m holes, then at least one hole contains more than two pigeons.

Doubled Pigeonhole Principle

Doubled Pigeonhole Principle: If 2m + 1 pigeons are distributed by m holes, then at least one hole contains more than two pigeons.

Propositonal encoding of $2PHP_m^{2m+1}$

• Variables: x_{ij} , $i \in [2m + 1]$, $j \in [m]$

 $x_{ij} = 1$ iff pigeon *i* is place in hole *j*

N=(2m+1)m

Doubled Pigeonhole Principle

Doubled Pigeonhole Principle: If 2m + 1 pigeons are distributed by *m* holes, then at least one hole contains more than two pigeons.

Propositional encoding of $2PHP_m^{2m+1}$

• Variables: x_{ij} , $i \in [2m + 1]$, $j \in [m]$

 $x_{ij} = 1$ iff pigeon *i* is place in hole *j*

N=(2m+1)m

• Contraints:

$$\bigwedge_{i=1}^{2m+1} \quad (x_{i1} \vee \ldots \vee x_{im})$$

$$\bigwedge_{j=1}^{m} \quad \bigwedge_{i_{1}=1}^{2m-1} \bigwedge_{i_{2}=1}^{2m} \bigwedge_{i_{3}=3}^{2m+1} (\neg x_{i_{1}j} \lor \neg x_{i_{2}j} \lor \neg x_{i_{3}j})$$

$\mathsf{DRE}(2PHP_m^{2m+1})$:

- for each x_{ij} , $i \in [2m + 1]$, $j \in [m]$:
 - associate variables p_{ij} and n_{ij}
 - add soft clauses (p_{ij}) , (n_{ij})
 - add hard \mathcal{P} -clause $(\neg p_{ij} \lor \neg n_{ij})$

 $DRE(2PHP_m^{2m+1})$:

- for each x_{ij} , $i \in [2m + 1]$, $j \in [m]$:
 - associate variables p_{ij} and n_{ij}
 - add soft clauses (p_{ij}) , (n_{ij})
 - add hard \mathcal{P} -clause $(\neg p_{ij} \lor \neg n_{ij})$
- for each $i \in [2m+1]$:

$$\mathcal{L}_i = (\neg n_{i1} \lor \ldots \lor \neg n_{im})$$

$DRE(2PHP_m^{2m+1})$:

- for each x_{ij} , $i \in [2m + 1]$, $j \in [m]$:
 - associate variables p_{ij} and n_{ij}
 - add soft clauses (p_{ij}) , (n_{ij})
 - add hard \mathcal{P} -clause $(\neg p_{ij} \lor \neg n_{ij})$
- for each $i \in [2m+1]$:

$$\mathcal{L}_i = (\neg n_{i1} \lor \ldots \lor \neg n_{im})$$

• for each $j \in [m]$:

$$\mathcal{M}_{j} = \bigwedge_{i_{1}=1}^{2m-1} \bigwedge_{i_{2}=1}^{2m} \bigwedge_{i_{3}=3}^{2m+1} (\neg p_{i_{1}j} \lor \neg p_{i_{2}j} \lor \neg p_{i_{2}j})$$

$DRE(2PHP_m^{2m+1})$:

- for each x_{ij} , $i \in [2m + 1]$, $j \in [m]$:
 - associate variables p_{ij} and n_{ij}
 - add soft clauses (p_{ij}) , (n_{ij})
 - add hard \mathcal{P} -clause $(\neg p_{ij} \lor \neg n_{ij})$
- for each $i \in [2m+1]$:

$$\mathcal{L}_i = (\neg n_{i1} \lor \ldots \lor \neg n_{im})$$

• for each $j \in [m]$:

$$\mathcal{M}_j = igwedge_{i_1=1}^{2m-1} igwedge_{i_2=1}^{2m} igwedge_{i_3=3}^{2m+1} (\neg p_{i_1j} \lor \neg p_{i_2j} \lor \neg p_{i_2j})$$

 $2PHP_m^{m+1}$ unsatisfiable if cost $\geq N+1 = (2m+1)m+1$

Proposition

Given $< M_j, S >$ there is an execution of the basic MaxHS algorithm that computes a MaxSAT cost of 2m - 1 in polynomial time.

Proposition

Given $< M_j, S >$ there is an execution of the basic MaxHS algorithm that computes a MaxSAT cost of 2m - 1 in polynomial time.

Proof Idea:

- Order the clauses in the SAT solver (via an ordering of the variables)
- Cores induce sets to hit in MHS that correspond to a known structure (a set of all triplets, or a set of all triplets plus some triplets containing and additional element)
- Last iteration corresponds to a minimum hitting set of size 2m 1 (cost)

Outline

Basic MaxHS Algorithm

DRMaxSAT

DRMaxSAT/basic MaxHS vs Pigeonhole Principle

DRMaxSAT/basic MaxHS vs Doubled Pigeonhole Principle

Conclusions

Conclusions

- MaxHS-like MaxSAT algorithms show good performance on dual-rail encoded families of benchmarks
- Showed that DRMaxSAT using Basic MaxHS Algorithm can refute in polynomial time:
 - Pigeonhole Principle
 - Doubled Pigeonhole Principle
- Future work will seek to :
 - understand how MaxHS-like algorithms compare with core-guided algorithms
 - search for other principles (hard for resolution) for which DRMaxSAT may be beneficial