DRAT proofs, propagation redundancy and extended resolution

Neil Thapen

Institute of Mathematics Czech Academy of Sciences

Joint work with Sam Buss

SAT 2019, Lisbon

Background

Main results

Lower bound proof

Background

Main results

Lower bound proof

Some references

O. Kullmann

On a generalization of extended resolution, 1999

- M. Järvisalo, M.J.H. Heule, A. Biere *Inprocessing rules*, 2012
- M.J.H. Heule, B. Kiesl, M. Seidl, A. Biere *PRuning through satisfaction*, 2017
- B. Kiesl, A. Rebola-Pardo, M.J.H. Heule Extended resolution simulates DRAT, 2018
- M.J.H. Heule, A. Biere What a difference a variable makes, 2018
- M.J.H. Heule, B. Kiesl, A. Biere Strong extension-free proof systems, 2019

We consider *refutations* of unsatisfiable sets of clauses Γ .

We consider *refutations* of unsatisfiable sets of clauses Γ .

A *derivation* of a clause C from Γ is a sequence $\Gamma_0, \ldots, \Gamma_t$ where

- $\Gamma_0 = \Gamma$ and $C \in \Gamma_t$
- each Γ_{*i*+1} is derivable from Γ_{*i*} by a *rule* of the system being considered.

Rules will always preserve satisfiability.

We consider *refutations* of unsatisfiable sets of clauses Γ .

A *derivation* of a clause C from Γ is a sequence $\Gamma_0, \ldots, \Gamma_t$ where

- $\Gamma_0 = \Gamma$ and $C \in \Gamma_t$
- each Γ_{*i*+1} is derivable from Γ_{*i*} by a *rule* of the system being considered.

Rules will always preserve satisfiability.

A refutation of Γ is a derivation of the empty clause \perp from $\Gamma.$

We consider *refutations* of unsatisfiable sets of clauses Γ .

A *derivation* of a clause C from Γ is a sequence $\Gamma_0, \ldots, \Gamma_t$ where

- $\Gamma_0 = \Gamma$ and $C \in \Gamma_t$
- each Γ_{*i*+1} is derivable from Γ_{*i*} by a *rule* of the system being considered.

Rules will always preserve satisfiability.

A *refutation* of Γ is a derivation of the empty clause \perp from Γ .

A system \mathcal{P} simulates a system \mathcal{Q} if every \mathcal{Q} -refutation of Γ can be changed into a \mathcal{P} -refutation of Γ in polynomial time.

We write things like $\mathcal{Q} \leq \mathcal{P}$, $\mathcal{Q} < \mathcal{P}$, $\mathcal{Q} \equiv \mathcal{P}$.

Some notation

- p, q are literals, $\overline{p}, \overline{q}$ are their negations
- C, D are clauses
- α, β are partial assignments
- we can interpret partial assignments as sets of unit clauses
 e.g. if α : x → 1, y → 0, undefined elsewhere
 then α corresponds to {{x}, {y}}
- \overline{C} is the partial assignment expressing the negation of C

Resolution, UP and RUP

Resolution rule

If Γ_i contains $C \lor p$ and $D \lor \overline{p}$, derive $\Gamma_{i+1} = \Gamma \cup \{C \lor D\}$.

If C or D is empty, this is a *unit propagation* inference.

Resolution, UP and RUP

Resolution rule

If Γ_i contains $C \lor p$ and $D \lor \overline{p}$, derive $\Gamma_{i+1} = \Gamma \cup \{C \lor D\}$.

If C or D is empty, this is a *unit propagation* inference.

Definition

- $\Gamma \vdash_1 \bot$ means Γ is refutable using only unit propagations
- Γ ⊢₁ C means Γ ∪ C ⊢₁ ⊥
 We say C is derivable from Γ by reverse unit propagation.

Resolution, UP and RUP

Resolution rule

If Γ_i contains $C \lor p$ and $D \lor \overline{p}$, derive $\Gamma_{i+1} = \Gamma \cup \{C \lor D\}$.

If C or D is empty, this is a *unit propagation* inference.

Definition

- $\Gamma \vdash_1 \bot$ means Γ is refutable using only unit propagations
- Γ ⊢₁ C means Γ ∪ C ⊢₁ ⊥
 We say C is derivable from Γ by reverse unit propagation.

 $\Gamma \vdash_1 C$ implies (but is not equivalent to) $\Gamma \vDash C$. The relation \vdash_1 is decidable in polynomial time.

Initial rules

 \vdash_1 rule (reverse unit propagation rule)

From Γ derive $\Gamma \cup \{C\}$, if $\Gamma \vdash_1 C$.

Initial rules

 \vdash_1 rule (reverse unit propagation rule)

From Γ derive $\Gamma \cup \{C\}$, if $\Gamma \vdash_1 C$.

Deletion rule From Γ derive any $\Delta \subseteq \Gamma$.

Initial rules

 \vdash_1 rule (reverse unit propagation rule)

From Γ derive $\Gamma \cup \{C\}$, if $\Gamma \vdash_1 C$.

Deletion rule From Γ derive any $\Delta \subseteq \Gamma$.

Resolution is equivalent to the system with just the \vdash_1 rule.

Neither system gets stronger if we also add the deletion rule.

Extended resolution (ER)

Extension rule If r does not occur in Γ , for any p, q we can add to Γ the clauses $\overline{p} \lor \overline{q} \lor r$ $\overline{r} \lor p$ $\overline{r} \lor q$ expressing $r \leftrightarrow (p \land q)$.

Extended resolution (ER)

Extension rule

If r does not occur in Γ , for any p, q we can add to Γ the clauses

 $\overline{p} \lor \overline{q} \lor r \qquad \overline{r} \lor p \qquad \overline{r} \lor q$

```
expressing r \leftrightarrow (p \wedge q).
```

This is a very strong system. No non-trivial lower bounds are known.

The RAT rule

Definition

Let C contain a literal p. C is a resolution asymmetric tautology (RAT) w.r.t. Γ and p if

 $\Gamma \vdash_1 C \lor D$

for every clause of the form $D \vee \overline{p}$ in Γ .

The RAT rule

Definition

Let C contain a literal p. C is a resolution asymmetric tautology (RAT) w.r.t. Γ and p if

 $\Gamma \vdash_1 C \lor D$

for every clause of the form $D \vee \overline{p}$ in Γ .

RAT rule

Let C be any clause (even in new variables). If C is RAT w.r.t. Γ and p for some $p \in C$, we can derive $\Gamma \cup \{C\}$ from Γ .

The RAT rule

Definition

Let C contain a literal p. C is a resolution asymmetric tautology (RAT) w.r.t. Γ and p if

 $\Gamma \vdash_1 C \lor D$

for every clause of the form $D \vee \overline{p}$ in Γ .

RAT rule

Let C be any clause (even in new variables). If C is RAT w.r.t. Γ and p for some $p \in C$, we can derive $\Gamma \cup \{C\}$ from Γ .

Deletion can make more clauses RAT.

Lemma

If Γ is satisfiable, and *C* is RAT w.r.t. Γ and a literal *p*, then $\Gamma \cup \{C\}$ is satisfiable.

Lemma

If Γ is satisfiable, and *C* is RAT w.r.t. Γ and a literal *p*, then $\Gamma \cup \{C\}$ is satisfiable.

Proof. Recall *C* contains *p*.

Let τ be a **total** assignment with $\tau \vDash \Gamma$. If $\tau \vDash C$ we are done.

Lemma

If Γ is satisfiable, and *C* is RAT w.r.t. Γ and a literal *p*, then $\Gamma \cup \{C\}$ is satisfiable.

Proof. Recall *C* contains *p*. Let τ be a **total** assignment with $\tau \models \Gamma$. If $\tau \models C$ we are done. Otherwise, $\tau(p) = 0$. Let τ' be τ with *p* flipped to 1. Then τ' satisfies *C* and also every clause in Γ not containing \overline{p} .

Lemma

If Γ is satisfiable, and *C* is RAT w.r.t. Γ and a literal *p*, then $\Gamma \cup \{C\}$ is satisfiable.

Proof. Recall *C* contains *p*.

Let τ be a **total** assignment with $\tau \vDash \Gamma$. If $\tau \vDash C$ we are done.

Otherwise, $\tau(p) = 0$. Let τ' be τ with p flipped to 1.

Then τ' satisfies C and also every clause in Γ not containing \overline{p} .

It follows directly from the RAT condition that τ' also satisfies every clause in Γ which contains \overline{p} .

Hence $\tau' \vDash \Gamma \cup \{C\}$.

Propagation redundancy

Definition

A clause C is propagation redundant w.r.t. Γ if there is a partial assignment τ such that, setting $\alpha = \overline{C}$,

$$\tau \vDash C$$
 and $\Gamma_{|\alpha} \vdash_1 \Gamma_{|\tau}$.

Propagation redundancy

Definition

A clause C is propagation redundant w.r.t. Γ if there is a partial assignment τ such that, setting $\alpha = \overline{C}$,

 $\tau \vDash C$ and $\Gamma_{|\alpha} \vdash_1 \Gamma_{|\tau}$.

PR rule

Let C be any clause (even in new variables). If C is PR w.r.t. Γ , we can derive $\Gamma \cup \{C\}$ from Γ .

Propagation redundancy

Definition

A clause C is propagation redundant w.r.t. Γ if there is a partial assignment τ such that, setting $\alpha = \overline{C}$,

 $\tau \vDash C$ and $\Gamma_{|\alpha} \vdash_1 \Gamma_{|\tau}$.

PR rule

Let C be any clause (even in new variables). If C is PR w.r.t. Γ , we can derive $\Gamma \cup \{C\}$ from Γ .

The PR rule generalizes the RAT rule. It also preserves satisfiability.

Systems

- RAT has the RAT and \vdash_1 rules
- PR has the PR and \vdash_1 rules
- DRAT has the RAT, \vdash_1 and deletion rules
- DPR has the PR, \vdash_1 and deletion rules

Easy to show these are all equivalent to ER and thus very strong.

Systems

- RAT has the RAT and \vdash_1 rules
- PR has the PR and \vdash_1 rules
- DRAT has the RAT, \vdash_1 and deletion rules
- DPR has the PR, \vdash_1 and deletion rules

Easy to show these are all equivalent to ER and thus very strong.

"No new variables"

We study **weakened** systems where, in refutations of Γ , we may **only use variables from** Γ . We consider, amongst others:

- RAT⁻ has the RAT and \vdash_1 rules, with no new variables
- PR⁻ etc.
- DRAT⁻
- DPR⁻

Question

Basic picture

$\begin{aligned} &\mathsf{Res} < \mathsf{DRAT}^- \leq \mathsf{DPR}^- \leq \mathsf{ER} \\ &\mathsf{Res} < \mathsf{RAT}^- \leq \mathsf{PR}^- \leq \mathsf{ER} \end{aligned}$

What more can be said?

Background

Main results

Lower bound proof

Results 1 : restrictions

Known: RAT \equiv ER

Results 1 : restrictions

Known: $RAT \equiv ER$

Proposition

Any proof system which simulates RAT⁻, and which is closed under restrictions, also simulates ER.

Results 1 : restrictions

Known: $RAT \equiv ER$

Proposition

Any proof system which simulates RAT⁻, and which is closed under restrictions, also simulates ER.

Most commonly studied proof systems are *closed under restrictions*. That is, short refutations of Γ imply short refutations of $\Gamma_{l\alpha}$.

Results 2 : deletion collapses sytems

Known: DRAT⁻ **almost** simulates DPR⁻. The simulation works if we allow **one** new variable.

Results 2 : deletion collapses sytems

Known: DRAT⁻ **almost** simulates DPR⁻. The simulation works if we allow **one** new variable.

 $\frac{\mathsf{Proposition}}{\mathsf{DRAT}^{-}} \equiv \mathsf{DPR}^{-}$

Results 2 : deletion collapses sytems

Known: DRAT⁻ **almost** simulates DPR⁻. The simulation works if we allow **one** new variable.

Proposition DRAT⁻ \equiv DPR⁻

Idea: manipulate PR steps to free one variable.

Results 3 : various upper bounds

Many standard hard tautologies, used to prove size lower bounds, have polynomial size refutations in PR⁻. (Some of these were already known)

- The pigeonhole principle
- Tseitin contradictions

Results 3 : various upper bounds

Many standard hard tautologies, used to prove size lower bounds, have polynomial size refutations in PR⁻. (Some of these were already known)

- The pigeonhole principle
- Tseitin contradictions
- The bit pigeonhole principle
- The parity principle
- The clique-colouring principle
- OR-ifications and XOR-ifications.

Idea: these are all very symmetrical, so we can find many useful partial assignment pairs α and τ with $\Gamma_{|\alpha} = \Gamma_{|\tau}$.

Results 3 : various upper bounds

Many standard hard tautologies, used to prove size lower bounds, have polynomial size refutations in PR⁻. (Some of these were already known)

- The pigeonhole principle
- Tseitin contradictions
- The bit pigeonhole principle
- The parity principle
- The clique-colouring principle
- OR-ifications and XOR-ifications.

Idea: these are all very symmetrical, so we can find many useful partial assignment pairs α and τ with $\Gamma_{|\alpha} = \Gamma_{|\tau}$.

Question: what is a plausible hard principle for PR⁻?

Results 4 : a lower bound

Theorem

RAT⁻ refutations of the bit pigeonhole principle BPHP_n require size exponential in *n*.

Results 4 : a lower bound

Theorem

RAT⁻ refutations of the bit pigeonhole principle BPHP_n require size exponential in *n*.

New picture

$$\label{eq:Res} \begin{split} \mathsf{Res} &< \mathsf{DRAT}^- \equiv \mathsf{DPR}^- \leq \mathsf{ER} \\ \mathsf{Res} &< \mathsf{RAT}^- < \mathsf{PR}^- \leq \mathsf{ER} \end{split}$$

Background

Main results

Lower bound proof

Bit pigeonhole principle

Definition

Let $n = 2^k$. The propositional contradiction BPHP_n asserts that each of n + 1 pigeons maps to a distinct k-bit binary string.

Bit pigeonhole principle

Definition

Let $n = 2^k$. The propositional contradiction BPHP_n asserts that each of n + 1 pigeons maps to a distinct k-bit binary string.

Variables: p_1^x, \ldots, p_k^x for the string assigned to pigeon x

BPHP_n consists of $O(n^3)$ "hole" clauses, each of width 2k, asserting that pigeons x and x' do not both map to string y.

Goal

We define the *pigeon width*, or *p-width*, of a clause or assignment to be the number of pigeons it mentions.

We define the *pigeon width*, or *p-width*, of a clause or assignment to be the number of pigeons it mentions.

Lemma

There is no RAT⁻ refutation of BPHP_n in which every clause has p-width $\leq n/3$.

We define the *pigeon width*, or *p-width*, of a clause or assignment to be the number of pigeons it mentions.

Lemma

There is no RAT⁻ refutation of BPHP_n in which every clause has p-width $\leq n/3$.

Corollary

There is no RAT⁻ refutation of BPHP_n of size $2^{n/80}$.

Pigeon facts

A partial matching β is a partial assignment assigning some distinct pigeons to some distinct holes (by setting all their bits).

Pigeon facts

A partial matching β is a partial assignment assigning some distinct pigeons to some distinct holes (by setting all their bits).

Fact 1

If C has p-width m and \overline{C} has no extension to a partial matching, then C is derivable from BPHP_n in resolution in p-width m.

Idea: it is easy to falsify BPHP_n, starting from \overline{C} .

Pigeon facts

A partial matching β is a partial assignment assigning some distinct pigeons to some distinct holes (by setting all their bits).

Fact 1

If C has p-width m and \overline{C} has no extension to a partial matching, then C is derivable from BPHP_n in resolution in p-width m.

Idea: it is easy to falsify BPHP_n, starting from \overline{C} .

Fact 2

BPHP_n has no resolution refutation of p-width $\leq n$.

Further suppose β is a partial matching setting $\leq n/2$ pigeons. Then BPHP_n $\cup \beta$ has no resolution refutation of p-width $\leq n/2$.

Idea: $BPHP_n \cup \beta$ looks like $BPHP_{n/2}$.

Width lower bound

Claim

Let $\Gamma_0, \ldots, \Gamma_t$ be a resolution derivation with $\Gamma_0 = \mathsf{BPHP}_n$ s.t.

- all clauses have p-width $\leq n/3$
- no clause of BPHP_n is ever deleted.

Let C have p-width $\leq n/3$ and be RAT w.r.t. Γ_t and some p.

Then C is derivable from BPHP_n in **resolution** in p-width n/3.

Width lower bound

Claim

Let $\Gamma_0, \ldots, \Gamma_t$ be a resolution derivation with $\Gamma_0 = \mathsf{BPHP}_n$ s.t.

- all clauses have p-width $\leq n/3$
- no clause of $BPHP_n$ is ever deleted.

Let C have p-width $\leq n/3$ and be RAT w.r.t. Γ_t and some p.

Then C is derivable from BPHP_n in **resolution** in p-width n/3.

It follows that a RAT⁻ refutation of BPHP_n of small p-width can be turned step-by-step into a resolution refutation of BPHP_n of small p-width.

By Fact 2, there can be no such refutation.

By Fact 1, to prove the claim it is enough to show \overline{C} cannot be extended to a partial matching.

So suppose \overline{C} can be extended to a partial matching.

By Fact 1, to prove the claim it is enough to show \overline{C} cannot be extended to a partial matching.

So suppose \overline{C} can be extended to a partial matching.

We are given that C is RAT w.r.t. Γ_t and some literal p.

Trick: find a hole axiom of the form $\overline{p} \lor H$ such that $\overline{C} \cup \overline{H}$ can be extended to a partial matching β setting $\leq n/2$ pigeons.

By Fact 1, to prove the claim it is enough to show \overline{C} cannot be extended to a partial matching.

So suppose \overline{C} can be extended to a partial matching.

We are given that C is RAT w.r.t. Γ_t and some literal p.

Trick: find a hole axiom of the form $\overline{p} \lor H$ such that $\overline{C} \cup \overline{H}$ can be extended to a partial matching β setting $\leq n/2$ pigeons.

By the RAT assumption, $\Gamma_t \vdash_1 C \lor H$. That is, $\Gamma_t \cup \overline{C} \cup \overline{H} \vdash_1 \bot$.

By Fact 1, to prove the claim it is enough to show \overline{C} cannot be extended to a partial matching.

So suppose \overline{C} can be extended to a partial matching.

We are given that C is RAT w.r.t. Γ_t and some literal p.

Trick: find a hole axiom of the form $\overline{p} \lor H$ such that $\overline{C} \cup \overline{H}$ can be extended to a partial matching β setting $\leq n/2$ pigeons.

By the RAT assumption, $\Gamma_t \vdash_1 C \lor H$. That is, $\Gamma_t \cup \overline{C} \cup \overline{H} \vdash_1 \bot$. Hence $\Gamma_t \cup \beta \vdash_1 \bot$, since $\overline{C} \cup \overline{H} \subseteq \beta$.

By Fact 1, to prove the claim it is enough to show \overline{C} cannot be extended to a partial matching.

So suppose \overline{C} can be extended to a partial matching.

We are given that C is RAT w.r.t. Γ_t and some literal p.

Trick: find a hole axiom of the form $\overline{p} \lor H$ such that $\overline{C} \cup \overline{H}$ can be extended to a partial matching β setting $\leq n/2$ pigeons.

By the RAT assumption, $\Gamma_t \vdash_1 C \lor H$. That is, $\Gamma_t \cup \overline{C} \cup \overline{H} \vdash_1 \bot$. Hence $\Gamma_t \cup \beta \vdash_1 \bot$, since $\overline{C} \cup \overline{H} \subseteq \beta$.

But Γ_t is derivable from BPHP_n in resolution in p-width n/3.

By Fact 1, to prove the claim it is enough to show \overline{C} cannot be extended to a partial matching.

So suppose \overline{C} can be extended to a partial matching.

We are given that C is RAT w.r.t. Γ_t and some literal p.

Trick: find a hole axiom of the form $\overline{p} \lor H$ such that $\overline{C} \cup \overline{H}$ can be extended to a partial matching β setting $\leq n/2$ pigeons.

By the RAT assumption, $\Gamma_t \vdash_1 C \lor H$. That is, $\Gamma_t \cup \overline{C} \cup \overline{H} \vdash_1 \bot$. Hence $\Gamma_t \cup \beta \vdash_1 \bot$, since $\overline{C} \cup \overline{H} \subseteq \beta$.

But Γ_t is derivable from BPHP_n in resolution in p-width n/3. Therefore BPHP_n $\cup \beta$ is refutable in resolution in p-width n/3, contradicting Fact 2.

Summary of main results

$\mathsf{Res} < \mathsf{DBC}^- \equiv \mathsf{DRAT}^- \equiv \mathsf{DSPR}^- \equiv \mathsf{DPR}^- \le \mathsf{DSR}^- \le \mathsf{ER}$

$\mathsf{Res} \, < \, \mathsf{BC}^- \, \leq \, \mathsf{RAT}^- \, < \, \mathsf{SPR}^- \, \leq^* \, \mathsf{PR}^- \, \leq \, \mathsf{SR}^- \, \leq \, \mathsf{ER}$

The full paper is on Sam's webpage:

www.math.ucsd.edu/~sbuss/ResearchWeb/DRAT_PR/