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Proof complexity

We consider refutations of unsatisfiable sets of clauses Γ.

A derivation of a clause C from Γ is a sequence Γ0, . . . , Γt where

• Γ0 = Γ and C ∈ Γt

• each Γi+1 is derivable from Γi by a rule of the system being
considered.

Rules will always preserve satisfiability.

A refutation of Γ is a derivation of the empty clause ⊥ from Γ.

A system P simulates a system Q if every Q-refutation of Γ can be
changed into a P-refutation of Γ in polynomial time.

We write things like Q ≤ P, Q < P, Q ≡ P.
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Some notation

• p, q are literals, p, q are their negations

• C ,D are clauses

• α, β are partial assignments

• we can interpret partial assignments as sets of unit clauses
e.g. if α : x 7→ 1, y 7→ 0, undefined elsewhere

then α corresponds to {{x}, {y}}

• C is the partial assignment expressing the negation of C
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Resolution, UP and RUP

Resolution rule

If Γi contains C ∨ p and D ∨ p, derive Γi+1 = Γ ∪ {C ∨ D}.

If C or D is empty, this is a unit propagation inference.

Definition

• Γ `1 ⊥ means Γ is refutable using only unit propagations

• Γ `1 C means Γ ∪ C `1 ⊥
We say C is derivable from Γ by reverse unit propagation.

Γ `1 C implies (but is not equivalent to) Γ � C .
The relation `1 is decidable in polynomial time.
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Initial rules

`1 rule (reverse unit propagation rule)

From Γ derive Γ ∪ {C}, if Γ `1 C .

Deletion rule

From Γ derive any ∆ ⊆ Γ.

Resolution is equivalent to the system with just the `1 rule.

Neither system gets stronger if we also add the deletion rule.
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Extended resolution (ER)

Extension rule

If r does not occur in Γ, for any p, q we can add to Γ the clauses

p ∨ q ∨ r r ∨ p r ∨ q

expressing r ↔ (p ∧ q).

This is a very strong system.

No non-trivial lower bounds are known.
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The RAT rule

Definition

Let C contain a literal p. C is a resolution asymmetric tautology
(RAT) w.r.t. Γ and p if

Γ `1 C ∨ D

for every clause of the form D ∨ p in Γ.

RAT rule

Let C be any clause (even in new variables). If C is RAT w.r.t. Γ
and p for some p ∈ C , we can derive Γ ∪ {C} from Γ.

Deletion can make more clauses RAT.
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Soundness of RAT

Lemma

If Γ is satisfiable, and C is RAT w.r.t. Γ and a literal p, then
Γ ∪ {C} is satisfiable.

Proof. Recall C contains p.

Let τ be a total assignment with τ � Γ. If τ � C we are done.

Otherwise, τ(p) = 0. Let τ ′ be τ with p flipped to 1.

Then τ ′ satisfies C and also every clause in Γ not containing p.

It follows directly from the RAT condition that τ ′ also satisfies
every clause in Γ which contains p.

Hence τ ′ � Γ ∪ {C}.
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Propagation redundancy

Definition

A clause C is propagation redundant w.r.t. Γ if there is a partial
assignment τ such that, setting α = C ,

τ � C and Γ|α `1 Γ|τ .

PR rule

Let C be any clause (even in new variables). If C is PR w.r.t. Γ,
we can derive Γ ∪ {C} from Γ.

The PR rule generalizes the RAT rule.

It also preserves satisfiability.
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Systems

• RAT has the RAT and `1 rules

• PR has the PR and `1 rules

• DRAT has the RAT, `1 and deletion rules

• DPR has the PR, `1 and deletion rules

Easy to show these are all equivalent to ER and thus very strong.

“No new variables”

We study weakened systems where, in refutations of Γ, we may
only use variables from Γ. We consider, amongst others:

• RAT− has the RAT and `1 rules, with no new variables

• PR− etc.

• DRAT−

• DPR−
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Question

Basic picture

Res < DRAT− ≤ DPR− ≤ ER

Res < RAT− ≤ PR− ≤ ER

What more can be said?
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Results 1 : restrictions

Known: RAT ≡ ER

Proposition

Any proof system which simulates RAT−, and which is closed
under restrictions, also simulates ER.

Most commonly studied proof systems are closed under restrictions.

That is, short refutations of Γ imply short refutations of Γ|α.
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Results 2 : deletion collapses sytems

Known: DRAT− almost simulates DPR−.
The simulation works if we allow one new variable.

Proposition

DRAT− ≡ DPR−

Idea: manipulate PR steps to free one variable.
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Results 3 : various upper bounds

Many standard hard tautologies, used to prove size lower bounds,
have polynomial size refutations in PR−.
(Some of these were already known)

• The pigeonhole principle

• Tseitin contradictions

• The bit pigeonhole principle

• The parity principle

• The clique-colouring principle

• OR-ifications and XOR-ifications.

Idea: these are all very symmetrical, so we can find many useful
partial assignment pairs α and τ with Γ|α = Γ|τ .

Question: what is a plausible hard principle for PR−?
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Results 4 : a lower bound

Theorem

RAT− refutations of the bit pigeonhole principle BPHPn require
size exponential in n.

New picture

Res < DRAT− ≡ DPR− ≤ ER

Res < RAT− < PR− ≤ ER
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Bit pigeonhole principle

Definition

Let n = 2k . The propositional contradiction BPHPn asserts that
each of n + 1 pigeons maps to a distinct k-bit binary string.

Variables: px1 , . . . , p
x
k for the string assigned to pigeon x

BPHPn consists of O(n3) “hole” clauses, each of width 2k ,
asserting that pigeons x and x ′ do not both map to string y .
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Goal

We define the pigeon width, or p-width, of a clause or assignment
to be the number of pigeons it mentions.

Lemma

There is no RAT− refutation of BPHPn in which every clause has
p-width ≤ n/3.

Corollary

There is no RAT− refutation of BPHPn of size 2n/80.
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Pigeon facts

A partial matching β is a partial assignment assigning some
distinct pigeons to some distinct holes (by setting all their bits).

Fact 1

If C has p-width m and C has no extension to a partial matching,
then C is derivable from BPHPn in resolution in p-width m.

Idea: it is easy to falsify BPHPn, starting from C .

Fact 2

BPHPn has no resolution refutation of p-width ≤ n.

Further suppose β is a partial matching setting ≤ n/2 pigeons.
Then BPHPn ∪ β has no resolution refutation of p-width ≤ n/2.

Idea: BPHPn ∪ β looks like BPHPn/2.
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Width lower bound

Claim

Let Γ0, . . . , Γt be a resolution derivation with Γ0 = BPHPn s.t.

• all clauses have p-width ≤ n/3

• no clause of BPHPn is ever deleted.

Let C have p-width ≤ n/3 and be RAT w.r.t. Γt and some p.

Then C is derivable from BPHPn in resolution in p-width n/3.

It follows that a RAT− refutation of BPHPn of small p-width can
be turned step-by-step into a resolution refutation of BPHPn of
small p-width.

By Fact 2, there can be no such refutation.
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Width lower bound continued

By Fact 1, to prove the claim it is enough to show C cannot be
extended to a partial matching.

So suppose C can be extended to a partial matching.

We are given that C is RAT w.r.t. Γt and some literal p.

Trick: find a hole axiom of the form p ∨H such that C ∪H can be
extended to a partial matching β setting ≤ n/2 pigeons.

By the RAT assumption, Γt `1 C ∨ H. That is, Γt ∪ C ∪ H `1 ⊥.

Hence Γt ∪ β `1 ⊥, since C ∪ H ⊆ β.

But Γt is derivable from BPHPn in resolution in p-width n/3.

Therefore BPHPn ∪ β is refutable in resolution in p-width n/3,
contradicting Fact 2.
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Summary of main results

Res < DBC− ≡ DRAT− ≡ DSPR− ≡ DPR− ≤ DSR− ≤ ER

Res < BC− ≤ RAT− < SPR− ≤∗ PR− ≤ SR− ≤ ER

The full paper is on Sam’s webpage:

www.math.ucsd.edu/∼sbuss/ResearchWeb/DRAT PR/
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